An approach to characterizing the local Langlands conjecture over *p*-adic fields

Alex Youcis (IMPAN)
(joint with A. Bertoloni Meli (Michigan))

2020 CARTOON conference

Some notation

Throughout this talk we will use the following notation:

- F a p-adic local field (with ring of integers \mathcal{O} and residue field k).
- G a reductive group over F (e.g. $G = \operatorname{Sp}_{2n}$).
- \widehat{G} will denote the dual group to G (e.g. $\widehat{\operatorname{Sp}_{2n}} = \operatorname{SO}_{2n+1}$).
- LG will denote the Weil form of the L-group (i.e. ${}^LG = \widehat{G} \rtimes W_F$).

The local Langlands conjecture

A Langlands correspondence

A Langlands correspondence for G is a finite-to-one association

$$\mathsf{LL} : \left\{ \begin{array}{c} \mathsf{Admissible} \ \mathsf{representations} \\ \mathsf{of} \ \mathit{G}(\mathit{F}) \end{array} \right\} \to \left\{ \begin{array}{c} \mathit{L}\text{-parameters} \\ \mathsf{of} \ \mathit{G} \end{array} \right\}$$

satisfying some list of desiderata.

L-packets

An *L-packet* for LL is a set (necessarily finite) of the form $\Pi_G(\psi) := LL^{-1}(\psi)$ for some *L*-parameter ψ of *G*.

The local Langlands conjecture (cont.)

Some known cases

- $G = GL_n$ (Harris–Taylor, Henniart, Scholze).
- $G = \operatorname{Sp}_{2n}$ and $G = \operatorname{SO}_{2n+1}$ (Arthur).
- G is a quasi-split unitary group (Mok).
- G is an arbitrary unitary group (Kaletha–Minguez–Shin–White).
- $G = GSp_4$ (Gan-Takeda)

The local Langlands conjecture (cont.)

Question

What are the desiderata that LL should satisfy and, do they uniquely characterize the correspondence LL?

The GL_n case

In the case of $G=\operatorname{GL}_n$ one can take the standard desiderata that LL is compatible with tensor products, local class field theory, L-functions, and ϵ -factors. These properties do uniquely characterize the correspondence.

Scholze's characterization of LLC for GL_n

Theorem (Scholze, 2013)

For every $\tau \in W_F^+$ and $h \in C_c^{\infty}(\mathrm{GL}_n(\mathcal{O}), \mathbb{Q})$ there exists a function $f_{\tau,h} \in C_c^{\infty}(\mathrm{GL}_n(F), \mathbb{Q})$ such that for any admissible representation π of $\mathrm{GL}_n(F)$ the equality

$$\operatorname{tr}(f_{\tau,h} \mid \pi) = \operatorname{tr}(\tau \mid \operatorname{LL}(\pi)(\chi)) \operatorname{tr}(h \mid \pi)$$

holds, and this uniquely characterizes LL.

The function $f_{\tau,h}$

The functions $f_{\tau,h}$

The functions $f_{\tau,h}$, which really should be denoted $f_{\tau,h}^{\mu}$, are of a geometric provenance.

- They can be described in terms of the cohomology of tubular neighborhoods inside of Rapoport–Zink spaces.
- They show up as terms in the trace formula existing within the framework of the Langlands–Kottwitz(–Scholze) method.
- They have generalized versions beyond GL_n for more general PEL type situations (Scholze) and in most abelian type situations (forthcoming work of the author).

The Scholze-Shin conjecture

Conjecture (Scholze-Shin)

Let G be an unramified group over \mathbb{Q}_p with \mathbb{Z}_p -model \mathcal{G} and let μ be a dominant cocharacter of $G_{\overline{\mathbb{Q}_p}}$ with reflex field E. Let $\tau \in W_{\mathbb{Q}_p}^+$ and let $h \in C_c^{\infty}(\mathcal{G}(\mathbb{Z}_p), \mathbb{Q})$. Then, for every supercuspidal L-parameter ψ

$$S\Theta_{\psi}(f_{ au,h}) = \operatorname{tr}\left(au \mid (r_{-\mu} \circ \psi) \mid_{W_{E}} \mid \cdot \mid_{E}^{-\langle \rho, \mu \rangle}\right) S\Theta_{\psi}(h).$$

Notation

- $S\Theta_{\psi}(f) := \sum_{\pi \in \Pi_G(\psi)} r_{\pi} \operatorname{tr}(f \mid \pi)$ —the stable character for ψ .
- $r_{-\mu}$ is the representation of LG whose restriction to \widehat{G} has highest weight μ^{\vee} .

The Scholze–Shin conjecture (cont.)

First natural question

Does the Scholze–Shin conjecture hold for LL for groups other than GL_n ?

Second natural question

Does the Scholze–Shin equations uniquely characterize LL for groups other than GL_n ?

The Scholze–Shin conjecture (cont.)

Towards the first question

This is known to hold in some cases:

- Some PEL cases (Scholze and Scholze-Shin).
- It's known to hold (appropriately interpreted) in some cases of the form $G = D^{\times}$ (Shen).
- It's known to hold in the case of unitary groups (Bertoloni Meli–Y.)

Setup for main result

Supercuspidal L-parameters

An *L*-parameter ψ is called *supercuspidal* if $\operatorname{im}(\psi)$ does not lie in a proper parabolic subgroup of LG and $\psi \mid_{\operatorname{SL}_2(\mathbb{C})}$ is trivial.

Slogan for supercuspidal L-parameters

Supercuspidal *L*-parameters should be those whose *L*-packet consists entirely of supercuspidals.

Setup for main result (cont.)

Elliptic hyperendoscopic group

An extended elliptic hyperendoscopic datum is a sequence of tuples of data $(H_1, s_1, {}^L\eta_1), \ldots, (H_k, s_k, {}^L\eta_k)$ such that $(H_1, s_1, {}^L\eta_1)$ is an extended elliptic endoscopic datum of G, and for i > 1, the tuple $(H_i, s_i, {}^L\eta_i)$ is an extended elliptic endoscopic datum of H_{i-1} .

Slogan for hyperendoscopic groups

They are a set of groups for which an *L*-parameter could factorize through and which is sufficiently large to study the packet structure of a parameter.

Example for hyperendoscopic groups

If G = U(n) then the elliptic hyperendoscopic groups for G are those of the form $U(a_1) \times \cdots \times U(a_m)$ with $a_1 + \cdots + a_m = n$.

Setup for main result (cont.)

Supercuspidal local Langlands correspondence

A supercuspidal local Langlands correspondence for a group G (assumed quasi-split for simplicity) is an association

$$\Pi_H: \left\{ \begin{aligned} &\text{Equivalence classes of} \\ &\text{Supercuspidal L-parameters} \\ &\text{for H} \end{aligned} \right\} \rightarrow \left\{ \begin{aligned} &\text{Finite subsets} \\ &\text{of } \mathrm{Irr}^{\mathrm{sc}}(H(F)) \end{aligned} \right\}$$

for every elliptic hyperendoscopic group H of G satisfying the following conditions:

- (Dis) Packets for distinct parameters are disjoint.
- **(Bij)** There is a bijection between $\Pi_H(\psi)$ and $\operatorname{Irr}(\overline{C_\psi})$.
- (St) The 'stable character' $S\Theta_{\psi}$ for any ψ is actually stable.
- (ECI) The endoscopic character identities hold.

Setup for main result (cont.)

Scholze-Shin data

For a group G an $Scholze-Shin\ datum$ is a collection of functions $\varphi^\mu_{\tau,h}$ depending on:

- (a certain set) of dominant cocharacters μ of hyperendoscopic groups H.
- $\tau \in W_E^+$ (*E* the reflex field of μ).
- $h \in C_c^{\infty}(K_H, \mathbb{Q})$ (K_H some compact open subgroup of H(F)).

Scholze-Shin equations

We say that Π_H satisfies the *Scholze–Shin equations* relative to $\{\varphi^{\mu}_{\tau,h}\}$ if the following equation holds for all ψ :

$$S\Theta_{\psi}(\varphi_{\tau,h}) = \operatorname{tr}\left(\tau \mid (r_{-\mu} \circ \psi) \mid_{W_{E}} \mid \cdot \mid_{E}^{-\langle \rho, \mu \rangle}\right) S\Theta_{\psi}(h).$$

The main result

Theorem (Bertoloni Meli–Y.)

Suppose that G is a 'good' group and that Π^1 and Π^2 are two supercuspidal Langlands correspondences for G which satisfy the Scholze–Shin equations for the same Scholze–Shin datum $\{\varphi^\mu_{\tau,h}\}$. Then, $\Pi^1=\Pi^2$ and the bijections in (Bij) are the same.

The notion of 'good'

Good groups

A group G is good if an L-parameter ψ for any hyperendoscopic groups H is determined by the set of Galois representations $\{r_{-\mu} \circ \psi\}$ for all cocharacters μ .

Examples/Non-examples

Some examples of 'good groups':

Examples	Non-examples
GL_n	SL_n
Un	SO_{2n}
SO_{2n+1}	Sp_{2n}
PGL_n	E ₈
G_2	

Broad idea of proof

• If $\Pi^1_H(\psi) = \{\pi\} = \Pi^2_H(\psi')$ then taking h such that $\Theta_\pi(h) \neq 0$ we see that

$$\operatorname{tr}(\tau \mid r_{-\mu} \circ \psi) = \frac{\Theta_{\psi}(\varphi_{\tau,h}^{\mu})}{\Theta_{\pi}(h)} = \operatorname{tr}(\tau \mid r_{-\mu} \circ \psi')$$

implies that $\psi \sim \psi'$.

- The desiderata for a supercuspidal Langlands correspondence non-trivially satisfy atomic stability—the fact that if S is a set of representations for which some linear combination is stable, then S is a union of L-packets—this in turn implies that if $\Pi_H^1(\psi) = \{\pi\}$ then $\{\pi\} = \Pi_H^2(\psi')$ for some ψ' .
- If $\Pi^1_H(\psi) = \{\pi\}$ then $\Pi^1_H(\psi) = \Pi^2_H(\psi)$.
- Every ψ can be written as $\eta \circ \psi^{H'}$ for $\psi^{H'}$ a parameter of some hyperendoscopic group H' of H (and thus of G) such that $\Pi^1_{H'}(\psi^{H'})$ is a singleton.

An application

Theorem (Bertoloni Meli–Y.)

Let E/\mathbb{Q}_p be an unramified extension and F the quadratic subextension of E. Let G be the quasi-split unitary group $U_{E/F}(n)^*$ associated to E/F. Then, the local Langlands correspondence for G (as in the work of Mok) satisfies the Scholze–Shin conjecture and is uniquely characterized by this condition.

Further directions and related ideas

- Result is reminiscient of a 'stable version' of V. Lafforgue's lemma following the work of Richardson.
- This 'stable version' is useful when applying global methods since usually only stable characters are accessible.
- Opens up question of whether there is a useful version of our main theorem with Scholze–Shin datum replaced by more general datum indexed by triples $(I, f, \{\gamma_i\})$ as in Lafforgue's lemma.
- Opens up question of whether there is a useful version of our result in the function field setting.

Thanks for listening!