
THE COHOMOLOGY OF SHIMURA VARIETIES AND THE

LANGLANDS CORRESPONDENCE

ALEX YOUCIS

Disclaimer

These are greatly extended notes based on talks the author has given surrounding his
recent work in [BMY] with A. Bertoloni Meli. This note is certainly very rough and
that should be kept in mind while reading it. In particular, the discussion in Part II
is woefully glib and is lacking in the correct attributions to the work of many brilliant
mathematicians. Do not take this as a full, or even accurate, account of the history of
the material discussed. If you think there are glaring errors in Part II, please feel free
to contact the author so that he can fix them.

Also, Part I is a motivation for the Langlands program from the perspective of the
cohomology of Shimura varieties. There is certainly no royal road to the statement of
the Langlands program, and in particular Part I was written with the audience (mostly
algebraic geometers) in mind. It completely ignores much of the representation theoretic
and/or analytic motivation for the Langlands program. For this the author suggests that
one consults the excellent article [Gel84]. Part I is also meant only to be a taster and
the author has ommitted most proofs as well as certainly making intended/unintdended
errors.

1. Part I: Matushima’s formula and the Langlands program

1.1. Motivation. The goal of this note is to discuss ongoing work of the author and A.
Bertoloni Meli. This work concerns the Scholze–Shin conjecture which in turn concerns
the local Langlands conjecture. We would like to spend the first part of this talk trying
to motivate the Langlands conjectures in the way that the author has always (personally)
found most insightful.
The conjectures at large Instead of trying to motivate the local Langlands conjectures
directly it is perhaps easier to try and get a grip on its global counterpart:

Conjecture 1.1 (Langlands, Buzzard-Gee, . . . ). Let G be a reductive group over Q.
Fix a prime ` and an isomorphism ι : Q`

∼= C. Then, there is commuting diagram of
associations{

Algebraic automorphic
representations of G

}
GLC //

π 7→πv
��

{
Algebraic admissible

homomorphisms ΓQ → LG(Q`)

}
σ 7→σ|ΓQv
��{

Admissible representations
of G(Qv)

}
LLC

//

{
Admissible homomorphisms

ΓQv → LG(Q`)

}
(1)
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where v ranges over all places of Q except v = `.

Remark 1.2. This is, in fact, not really the global Langlands conjecture for G. The
‘true’ global Langlands conjecture requires the existence of a ‘global Langlands group’
LQ whose mere existence is even conjectural. The above conjecture should be a conse-
quence of the global Langlands conjecture for G but one whose statement doesn’t need
to assume the existence of LQ. To see why this conjecture is far from ideal (contrasting
with the ‘true’ Langlands conjecture) we point out that the admissible homomorphism
GLC(π) isn’t even uniquely characterized by the property that GLC(π) |WQp= LLC(πp)

for almost all unramified p (even in some cases where G is a non-split torus)!
For more information on the above conjecture, including an explanation of termi-

nology and its relation to the ‘true’ global Langlands conjecture, see [BG14].

Before we launch in to the ‘what’ and the ‘how’ of these conjectures, it’s first useful to
understand the ‘why’. Namely, before we try to explain what these terms mean roughly
and why such a correspondence is not unbelievable we’d like to provide the reader with
three lists that will hopefully ground them when thinking about these conjectures.

We start with reasons to care (i.e. applications):

• The Langlands conjectures were used to prove Fermat’s Last Theorem. (Wiles)
• The Langlands conjectures are used to study the Sato-Tate conjecture for elliptic

curves. (Clozel, Harris, Shepherd-Baron,Taylor)
• The Langlands conjectures were used to prove Ramanujan’s τ -conjecture. (Deligne)
• The Langlands conjectures imply Artin’s L-function conjecture. (Langlands)
• The Langlands conjectures were used to show that the continuous homomorphism

Gal(Qp/Qp)→ Gal(Q{p,`}/Q) is injective, where ` and p are distrinct primes and
Q{p,`} is the maximal extension of Q unramified outside of p and `. (Chenevier–
Clozel)
• The Langlands conjectures (for function fields) were used to prove finiteness of

geometric representations. (Litt)

We then move on to reasons to believe:

• Many examples where the conjectures are known to be true.
• Converse theory (nice L-functions are automorphic).
• Langlands work on Eisenstein series (his letter to Weil).
• The cohomology of Shimura varieties (also a reason to care).

Finally we move on to known cases:

• The local Langlands conjecture is known for the groups ResF/QpGLn,F . (Harris–
Taylor, Henniart, Scholze)
• The local Langlands conjecture is known for the symplectic groups ResF/QpSp2n,

the odd orthogonal ResF/QpSO2n+1, and the even orthogonal groups ResF/QpSO2n.
(Arthur)
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• The local Langlands conjecture is known for the quasi-split unitary groups ResF/QpUE/F (N)∗.
(Mok)
• The local Langlands conjecture is known for inner forms of quasi-split unitary

groups. (Kaletha–Minguez–Shin–White)
• The local Langlands conjecture is known for ResF/QpGSp4. (Gan–Takeda)
• Many cases of the global Langlands conjecture are known for the groups ResF/QGLn,F .

(Harris–Lan–Taylor–Thorne, Shin, Scholze, Clozel, Harris–Taylor, Taylor–Yoshida,
. . . )

Moral of the above lists is that the Langlands conjecture is not some uknowable beast.
There are applications of it. There are are known cases of it. There are natural reasons
to believe it holds true in general.

What? How? Now that we have gotten the above out of the way, let us return to
the actual statement of Conjecture 1.1. It is not intended to be comprehensible except
in broad strokes. Namely, what I want its statement to elicit is the feeling that there
should be some association{

Automorphic representations
of G

}
→ {Galois representations} (2)

The following questions then present themselves to us:

Question 1.3.

(1) What are automorphic representations of G?
(2) Why should I expect to be able to associate Galois representations to them?

We will spend the rest of Part I trying to partially answer these questions. Our
explanation is far from explaining the precise nature of the Langlands conjecture but
will hopefully convince the reader that automorphic representations are not so crazy, and
it’s not so crazy that they should have interesting interaction with Galois representations.

Before we embark on this journey, we mention the underlying guiding principle that
we will try and utilize. Suppose that we have two abstract groups H and Γ and we wish
to form an association{

Representations
of H

}
→
{

Representations
of Γ

}
(3)

Now, if one wants two friends to dance, the first step is to get them to show up at the
same party. In particular, to create such an association we would like a vector space V
on which both H and Γ act. If we can find such a V satisfying two properties:

(1) The actions of H and Γ on V commute (or equivalently we have an action of
H × Γ on V ).

(2) The group H acts semisimply on V .

then we can actually create an association as in Equation (3). Namely, since H acts
semisimply on V we have a decomposition

V =
⊕
σ

V (σ) (4)
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where σ ranges over irreducible representations of H and V (σ) is the σ-isotypic com-
ponent of V . But, since Γ commutes with the action of H it’s easy to see that Γ
must stabilize V (σ) or, in other words, V (σ) is a Γ-representation. Thus, we obtain an
association of a representation σ of H to a representation V (σ) of Γ.

Now automorphic representations of G are representations of G(A) (the adelic points
of G) and Galois representations are, well, representations of the Galois group Gal(Q/Q).
Thus to apply the above general principle we will want to find a vector space on which
G(A)×Gal(Q/Q) (or something closely related) acts.

This is the perfect time to pose a question which is seemingly completely unrelated
(at this point one gives a knowing wink to the audience) to the Langlands program:

Question 1.4. How does one understand the singular cohomology of (locally) symmetric
spaces?

1.2. Locally symmetric spaces. In this subsection we briefly recall the definitions of
locally symmetric spaces.

Begin by recalling that if H is a connected semisimple real Lie group then one has
the following well-known theorem:

Theorem 1.5 (Cartain-Iwasawa-Malcev). The group H has a unique (up to conjugacy)
maximal compact subgroup C and NH(C) = C.

Proof. One can see [Con14, Theorem D.2.8] and the references therein. �

Remark 1.6. As loc. cit. shows, this is true even if H is just assumed to be a Lie
group with finitely many connected components. In particular, if G is a reductive
group over R then G(R) has a unique (up to conjugacy) maximal compact subgroup
(note that the fact that G(R) has only finitely many components is [Mil17, Corollary
25.55]). This is a fact that will come up implicitly in what follows as we shall soon
consider disconnected groups.

From this theorem we see that the real manifold H/C can be interpreted as the
space of maximal compact subgroups of H. This space of maximal compact subgroups
often times has a surprisingly interesting interpretation. We give some examples and
non-examples to this point:

Example 1.7. If H = SL2(R) and C = SO2(R) then H/C can be identified with the
upper-half plane

h = {z ∈ C : Im(z) > 0} (5)

by considering the action of SL2(R) on h by fractional linear transformations.
Moreover, h can be thought of as a moduli space of elliptic curves with (oriented)

trivialization of their homology. More precisely, let

F : An→ Set (6)

be the functor (where An denotes the category of complex analytic spaces) which asso-
ciates to S the isomorphism classes of pairs (E , ψ) where:

• f : E → S is an elliptic curve (e.g. a smooth proper map with a section whose
fibers are all genus 1 curves).
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• ψ is an isomorphism Z2 ≈−→ (R1f∗Z)∨ which is ‘i-oriented’.

then h represents F with representing object the elliptic curve Euniv → h such that for
all τ ∈ h we have that Euniv

τ
∼= C/(Z + Zτ). For more information see [Con, §6].

Example 1.8. If H = SLn(C) and C = SUn(R) and we can identify H/C with the space
of positive-definite Hermitian matrices:

H/C =

A ∈ Matn(C) :

(1) A = A∗

(2) A > 0

(3) det(A) = 1

 (7)

Example 1.9. If H is the 1-units in H, where H is the Hamiltonian quaternions, then
C = H and thus H/C is a point.

Remark 1.10. The truly interesting example in the above list is Example 1.7. In
fact, this example indicates why such spaces H/C (or closely related ones) might be
interesting to a geometer in general. Namely, recall that an elliptic curve over an
analytic space S is equivalent to the structure of a polarizable variation of Hodge
structure of type {(−1, 0), (0,−1)} on a rank 2 Q-local system. One can then see
Example 1.7 as part of the larger theory of Hermitian symmetric domains which,
essentially, are period spaces for Hodge structures (with some conditions) and which
are all (essentially) of the form H/C. For more information see the nice note [LZ].

Now, while these spaces H/C often times have interesting interpretations, they are
topologically non-interesting:

Theorem 1.11 (Cartan). The space H/C is diffeomorphic to Rn where n = dim(H/C).

Proof. Again, this follows from [Con14, Theorem D.2.8]. �

So, while the spaces H/C are not topologically interesting there is a fairly natural
operation that will produce interesting spaces. Namely, to get topologically interest-
ing spaces we could quotient the spaces H/C by certain discrete Γ subgroups of their
automorphism groups Aut(H/C) (here ‘Aut’ is, a priori, taken to be the group of self-
diffeomorphisms of H/C).

Example 1.12. If we are in the context of Example 1.7 then a natural candidate for Γ
would be the image of SL2(Z) in Aut(h). More generally, we could think of (the image
in Aut(h) of) certain subgroups of SL2(Z) like

Γ(N) := ker(SL2(Z)→ SL2(Z/NZ)) (8)

for N > 1 an integer.

Example 1.13. If we are in the context of Example 1.8 we might take the image in SL2(C)
of subgroups of the form SL2(Z[i]) or SL2(Z[

√
2]) (or subgroups of these constructed as

in Example 1.12).

Example 1.14. If we are in the context of Example 1.9 then there is nothing to do.
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In all examples we see that we constructed our subgroups of Aut(H/C) as discrete
subgroups Γ of H constructed by considering H = G(R)+ for G/Q an algebraic group
and taking Γ to be certain discrete subgroups of G(Q).

This suggests to us the following deifnition:

Definition 1.15. Let G be a semisimple group over Q. A subgroup Γ ⊆ G(Q) is called
congruence if there exists an embedding G ↪→ GLn such that Γ contains

ker(GLn(Z)→ GLn(Z/NZ)) ∩G(Q) (9)

for some N > 1. Set X+
G = X+ := G(R)+/C. Then, a space of the form Γ+\X+ is

called a symmetric space for G (here Γ+ = Γ ∩G(R)+).

Remark 1.16. What does ‘space’ mean in the above definition of symmetric space?
In general Γ+\X+ is only an orbifold as Γ may have torsion, and so may not act
properly discontinuously on X. But, for all Γ that are sufficiently small (e.g. those
contained in a group of the form in Equation (9) for N > 3) so as to be ‘neat’ (which
one should think of as the minimal modification to the definition of ‘torsion free’ that
behaves well functorially) Γ+ acts properly discontinuously on X+ and thus Γ+\X+

is a smooth manifold. Working with neat subgroups suffices in all cases of interest to
us, so we shall always assume (unless stated othewise) that our Γ+ are neat but we
don’t explicitly state this.

Remark 1.17. The above definition is, in some sense, non-standard and should be
taken only as motivational tool. It is really the objects of Definition 1.24 that are the
‘correct’ objects to consider.

Let us give some examples of symmetric spaces:

Example 1.18. If G = SL2 and Γ = Γ(N) as in Equation (8) (for N > 3) then
Γ(N)+\X+

SL2
=: Y +(N) has particularly interesting meaning. Namely, let us fix an

isomorphism ι : µN (C) ∼= Z/NZ. Then, Y +(N) represents the functor

F ιN : An→ Set (10)

which associates to S the isomorphism classes of pairs (E , ψιN ) where

• f : E → S is an elliptic curve.

• ψιN : E [N ]
≈−→ (Z/NZ)2 is an isomorphism of sheaves such that the induced

isomorphism det(ψιN ) : µN,S → Z/NZ is identified with ι (note that we have

used the fact that ∧2E [N ] ∼= µN,S by the Weil pairing). This isomorphism ψιN is
called a Γ(N)-level structure.

This complex analytic space Y +(N) (inheriting its complex structure from h) is actually
a smooth connected affine curve. We denote its smooth algebraic compactification by
X+(N) (don’t confuse this X with the X for symmetric spaces—just an unfortunate
notational clash). For more information see [Con, §8].

To see that symmetric spaces really do heavily depend on the choice of a model of GR
over Q (or equivalently what subgroups of Aut(X+) we are allowed to quotient by) we
note the following:
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Example 1.19. Let D be a division algebra over Q of dimension 4 which is split over R
(e.g. the quaternion algebra Q(2, 3)). Take G to be the group over Q with Q-points
given by the elements of D× of reduced norm 1. Then, GR ∼= SL2,R so X+

G
∼= X+

SL2
. But,

the symmetric spaces for G are very different those of SL2. In fact, for every congruence
subgroup Γ of G(Q) the symmetric space Γ+\X+

G is a compact connected Riemann
surface (thus a proper complex curve). This is in stark contrast to the symmetric spaces
of SL2 which have affine symmetric spaces. Such spaces are called Shimura curves and
they don’t have explicit moduli interpretations.

In fact, one has the following result of Borel:

Theorem 1.20 (Borel). Let G be a semisimple group over Q. Then, every (equiva-
lently one) symmetric space for G is compact if and only if there exists no embedding of
algebraic groups Gm,Q ↪→ G.

Remark 1.21. See Remark 1.33 to get a handle on why this is true.

Since it plays such a pivotal role in this note let us formalize this non-embedding
property:

Definition 1.22. An algebraic group G over a field F is called F -anisotropic if there
exists no embedding Gm,F ↪→ G.

Now, in the above examples there were many annoyances related to having to worry
about certain connected components. While a lot of these are just that, annoyances,
some pose serious obstacles to studying the hidden arithmetic associated to symmetric
spaces.

Consider the following:

Example 1.23. Consider the spaces Y +(N) from Example 1.12. Note that the moduli
problem for Y +(N) is tantalizing close to being a moduli problem definable over Q (or
even Z[ 1

N ]) save for this issue about having to choose an identification ι : µN (C) ∼= Z/NZ.
In fact, as it stands, the spaces Y +(N) are only defined over Spec(Q(µN (C)) (since we
need at least one identification µn ∼= Z/NZ over our ground field). Now for a fixed N this
is not a huge issue. That said, we see that there are natural projection maps Y +(NM)→
Y +(N) (essentially because a Γ(MN) level structure begets a Γ(N) level structure) for
any M > 1 and these maps will only be definable over Spec(Q(µlcm(M,N)(C))). So while

each Y +(N) is defined over a number field, the entire system {Y +(N)} is only defined
over Q which becomes more problematic if our goal is to be studying arithmetic.

To fix this we note that for each N if instead of Y +(N) we consider

Y (N) :=
⊔

ι:µN (C)∼=Z/NZ

Y +(N) (11)

(where we are identifying the ιth-copy of Y +(N) as having moduli problem F ιN ) this
problem disappears. Namely, Y (N) represents the moduli problem

FN : An→ Set (12)

associating to S isomorphism classes of pairs (E , ψ) where



8 ALEX YOUCIS

• f : E → S is an elliptic curve.

• ψ : E [N ]
≈−→ (Z/NZ)2 is an isomorphism.

In particular, we see that this moduli problem makes sense even over Z[ 1
N ] (or Z but

obviously it will have empty fibers over Fp for any p | N and thus will not be flat) and
thus Y (N) actually has a model over Q (e.g. by flat descent for affine morphisms—more
rigorously one can give a way overkill proof of this by combining [Sta18, Tag04SK] and
[Sta18, Tag03WG]). In fact, we see that the system {Y (N)} as a whole has a model over
Q. We denote by X(N) the smooth proper algebraic model of Y (N).

As the above example indicates restricting ourselves to connected objects highly ob-
fuscates the arithmetic properties of symmetric spaces. Thus, we would like a way to

consider not only symmetric spaces Γ+\X+ but also disjoint unions
⊔
i

Γ+
i \X

+. Of

course, the connected components of these disjoint unions should not be random—they
should have something to do with one another (as in the case of Example 1.23).

It turns out that, with a fair bit of insight, the correct way to frame this discussion is
adelically. Namely, we have the following definition:

Definition 1.24. Let G be a reductive group over Q. Let us fix a maximal compact
subgroup Kmax

∞ of G(R) and let C := (Kmax
∞ )◦. Let us then fix/denote:

• K∞ to be a compact subgroup of G(R) such that C ⊆ K∞ ⊆ Kmax
∞

• AG is the maximal Q-split subtorus of Z(G).

Then, for any compact open subgroup Kf ⊆ G(Af ) we set

SG(Kf ) := G(Q)\G(A)/(K∞KfAG(R)+) (13)

A space of the form SG(Kf ) is called a locally symmetric space for G.

Remark 1.25. Here we are denoting by A = (Ẑ⊗Z Q)× R the adele ring for Q and

by Af its subring of finite adeles Ẑ ⊗Z Q. We topologize this by the restricted direct
topology and topologize G(A) and G(Af ) in the usual way (e.g. see [Con12]).

Remark 1.26. It would perhaps be more accurate to denote these symmetric spaces
by SG(K∞,Kf ) or something to denote the dependence on K∞, but we will not do
so. This extra choice of having this K∞ being an arbitrary compact subgroup of G(R)
containing the group C of G(R)+ will turn out to be very convenient. But, more often
than not, K∞ can be taken to be C.

While this definition, with the addition of the adele ring of Q, is quite jarring at first
it really is no more than the correct formalism for talking about “‘disjoint unions of
symmetric spaces for G with respect to ‘similar groups”’. To convince the reader of this,
we state the following fact (whose proof we leave to the reader—see [PS92, Chapter 9]):
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Fact 1.27. The set G(Q)\G(Af )/Kf is finite. Let g1, . . . , gk be double coset represen-
tatives. Then,

SG(Kf ) =
k⊔
j=1

Γj\X (14)

where Γj := G(Q) ∩ gjKfg
−1
j and X := AG(R)+\G(R)/K∞. Moreover, Γj\X is a

disjoint union of spaces isomorphic to Γ+
j /X

+ where Γ+
j \X+ is a symmetric space for

Gder(R)+.

Remark 1.28. To further reinforce that the groups G(Q) ∩ gjKfg
−1
j are not that

crazy one can try and solve the following exercise: a subgroup Γ ⊆ G(Q) is congruence
if and only if Γ = Kf ∩ G(Q) where Kf is a compact open subgroup of G(Af ). This
gives a definition of congruence that is inherently independent of the choice of a faithful
representation of G.

Remark 1.29. The reader might be curious about the inclusion of this term AG(R)+

in the above quotient. The inclusion of this to the quotient is largely a matter of
convenience (as it simplifies the representation theory) and is topologically irrelevant
as one can show that the removal of AG(R)+ in the quotient just adds some junk
components of the form Rd.

Let us give an example:

Example 1.30. Let us take G = GL2. Note then that AG is just the diagonal matrices
in GL2 and for K∞ we take SO2(R). Note then that

X = R>0\GL2(R)/SO2(R) (15)

can be identified with the double half-plane

h± = C− R (16)

where GL2(R) acts on h± by fractional linear transformations. If we then set

K(N) := ker(GL2(Ẑ)→ GL2(Z/NZ)) (17)

then we leave the reader to show that SGL2(K(N)) = Y (N).

Remark 1.31. Again if we don’t assume that Kf is a ‘neat’ compact open subgroup
of G(Af ) then the space SG(Kf ) is really better thought of an orbifold (instead of a
real manifold) much as in Remark 1.16 and so, unless stated otherwise, we will always
implicitly assume that Kf is neat. In practice this is a non-issue since we often care
only about SG(Kf ) for a cofinal system of compact open subgroups (e.g. see Equation
23) of G(Af ) and neat subgroups form such a cofinal system.

The analogue of Borel’s theorem (Theorem 1.20) in this context is:

Theorem 1.32 (Borel). Let G be a reductive group over Q. Then, the space SKf (G) is

compact for some Kf (equivalently for all Kf ) if and only Gder is Q-anisotropic.
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Remark 1.33. For those interested, the reason for this is actually quite nice. Namely,
there is a natural compactification of symmetric spaces for G called the Baily-Borel
compactification (e.g. see Goresky’s chapter in [AEK05]). The boundary components
of this compactification are indexed by the proper parabolic subgroups P of G (i.e.
the proper closed subgroups P of G such that the fppf quotient G/P is proper). So,
we see that the symmetric spaces are compact if and only if G has no proper parabolic
subgroups. This turns out to be equivalent to the claim that Gder is Q-anisotropic
(although this equivalence requires a non-trivial amount of work).

Let us note that if K1
f ⊇ g−1K2

fg is a containment of compact open subgroups of

G(Af ), where g ∈ G(Af ), then there is a natural covering map of smooth manifolds

[g] : SK1
f
(G)→ SK2

f
(18)

(thought of as ‘projection to a double coset by a larger group then right action by g’)
this assembles to an action of G(Af ) on

SG := lim←−SG(Kf ) ≈ G(Q)\(X ×G(Af )) (19)

where G(Q) is acting diagonally on this last term and this isomorphism is as G(Af )-
spaces (e.g. see [Roh96, Proposition 1.9]). We call this action of G(Af ) on SG the Hecke
action (see Remark 1.43 for the relation to a perhaps more familiar relationship notion
of Hecke action).

Remark 1.34. Unless the author is mistaken (which is wholly possible) there is some
disagreement between [Roh96, Proposition 1.9] and [Mil04, Theorem 5.28]. In all
instances of interest to us we will assume that (AG)R is the largest R-split subtorus
of GR (i.e. that (AG)R = AGR) in which case there is no dissonance. If the reader
would like to assume this equality (AG)R = AGR they should feel free to do so or,
perhaps even better, just take SG to be the limit lim←−SG(Kf ) and understand that it’s

‘approximately’ G(Q)\(X ×G(Af )).

1.3. The cohomology of locally symmetric spaces. We are now interested in under-
standing the singular cohomology H i

sing(SG(Kf ),Q) or, more generally, the cohomology

of certain local systems on SG(Kf ). Given the complicated nature of Example 1.23 and
Example 1.19 this is likely to be a non-trivial task.

Let us begin by defining the local systems Fξ that will be of interest to us. Namely,
we have the following:

Definition 1.35. Let ξ : GL → GL(V ) be an algebraic representation where L/Q is
finite (we call such an object an algebraic Q-representation of G). Let us define an
L-local system Fξ,Kf (or just Fξ if Kf is clear from context) on SG(Kf ) as the sheaf of
sections associated to the map

G(Q)\V ×X ×G(Af )/Kf → SG(Kf ) (20)

where G(Q) acts diagonally on V ×X ×G(Af ) (where note that G(Q) ⊆ G(L) acts on
V ) and Kf only acts on the rightmost factor.
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Remark 1.36. To have that Fξ,Kf is well-behaved (e.g. that Fξ,Kf ,x
∼= V for x ∈

SKf (G)) we need to assume that Z(Q)∩Kf ⊆ ker ξ(Q). If (AG)R = AGR (as in Remark
1.34) this is automatic for Kf sufficiently small (which is all that is of interest to us
as well) and so this condition is ignorable in practice, thus we will not belabor this
condition—but it should be pointed out.

Example 1.37. If ξ is taken to be the trivial representation of G then it’s easy to see
that Fξ,Kf = L for all compact open Kf ⊆ G(Af ).

We can then rephrase Question 1.4 in the more precise way:

Question 1.38. Let G be a reductive group over Q and ξ an algebraic Q-representation
of G. Then how do we describe H i(SG(Kf ),Fξ)?

Remark 1.39. Let us note that if we give a decomposition

SG(Kf ) =
⊔
t

Γ+
t \X+ (21)

as in Fact 1.27 one has (at least if Kf is neat) that X+ is the universal cover of Γ+
t \X+

and (by Theorem 1.11) and that it’s contractible. In other words, we see that Γ+
t \X+

is a topological K(Γ+
t , 1) and so if ξ : GL → GL(V ) then

H i(Γ+
t \X+,Fξ) = H i(Γ+

t , V ) (22)

so, in essence, computing the cohomology of SG(Kf ) comes down to computing group
cohomology (this doesn’t really make the question any easier!).

Let us be more precise about in what way we want to describe the cohomology groups
H i(SG(Kf ),Fξ). Indeed, let us begin by defining the group

H i(SG,Fξ) := lim−→
Kf

H i(SG(Kf ),Fξ) (23)

(where this limit makes sense since the pullback of Fξ,K2
f

along the map in Equation

(18) is canonically Fξ,K1
f
) has a natural action of G(Af ) (see [Roh96] for alternative

ways to describe this colimit terms of honest group cohomology/sheaf cohomology).
In fact, note that for any fixed Kf ⊆ G(Af ) compact open we actually have, by the

Hocschild-Serre spectral sequence, a natural identification

H i(SG,Fξ)
Kf ∼= H i(SG(Kf ),Fξ) (24)

This indicates that the there is no direct action of G(Af ) on H i(SG(Kf ),Fξ) for a fixed
Kf .

But, this situation is a familiar (depending on your mathematical bend) and fixable
one. Namely, we have the following well-known definition:

Definition 1.40. The Hecke algebra of G(Af ) (with coefficients in L), denoted HL(G(Af ))
is the set of locally constant compactly supported functions f : G(Af )→ L. It’s a (usually
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non-unital) L-algebra under the convolution operator

(f1 ∗ f2)(g) :=

∫
G(Af )

f1(h−1g)f2(g) dh (25)

For any compact open subgroup Kf ⊆ G(Af ) we denote by HL(G(Af ),Kf ) the subalgebra
of HL(G(Af )) consisting of Kf -biinvariant functions. This is a unital algebra with unit
eKf := vol(Kf )−11Kf . It is spanned (as a vector L-space) by the functions 1KfgKf for
g ∈ G(Af ).

Remark 1.41. In the above, and throughout this note, we are supressing the surpris-
ingly subtle notion of choosing a ‘good’ Haar measure on the locally compact Hausdorff
G(Af ). See [HG, §3.5] for details on this topic.

The reason that this is a useful concept is the following:

Fact 1.42. Let M be a smooth L-representation (where L can be any characteristic 0

field) of G(Af ) (smoothness means that we have an equality of sets M =
⋃

Kf⊆G(Af )

compact open

MKf )

then M is a HL(G(Af ))-module with operation

f ·m :=

∫
G(Af )

f(h)(h ·m) dh (26)

which is non-degenerate (i.e. for every element m ∈ M there exists f ∈ HL(G(Af ))
such that f ·m = m). Moreover, this association is an equivalence of categories{

Smooth L-representations
of G(Af )

}
→
{

Non-degenerate
HL(G(Af ))-representations

}
(27)

Thus, in particular, the Hecke action of G(Af ) on H i(SG,Fξ) is ‘equivalent’ to the
action of the Hecke algebra HL(G(Af )) on H i(SG,Fξ). How does this observation help
us fix the fact that G(Af ) doesn’t directly act on H i(SG(Kf ),Fξ)?

Well, note that for any smooth L-representation M of G(Af ) that:

(1) The action of eKf on M is the projection operator M →MKf .
(2) The subalgebra HL(G(Af ),Kf ) is precisely eKf ∗HL(G(Af )) ∗ eKf .

In particular, we see that while MKf is not stabilized by G(Af ) it is a HL(G(Af ),Kf )-
module. In particular, H i(SG(Kf ),Fξ) is a HL(G(Af ),Kf )-module.

Remark 1.43. The action of HL(G(Af ),Kf ) on H i(SG(Kf ),Fξ) might have a more
familiar form to the reader who has had some exposure to modular curves (or more
generally Shimura varieties). Namely, for every double coset KfgKf (whose indicator
functions, as you’ll recall, generate HL(G(Af ),Kf )) one can get a so-called Hecke
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correspondence

SG(Kf ∩ gKfg
−1)

p1

((
p2

vv

SG(Kf ) SG(Kf )

(28)

where p1 is the projection operator and p2 is the projection to SG(gKfg
−1) and then

action by g (which does have image in SG(Kf )). One can show that this can be
upgraded to a cohomological correspondence on Fξ,Kf and thus one gets an endomor-

phism of H i(SG(Kf ),Fξ) in the usual way. This endomorphism, in fact, agrees with
the action of 1KfgKf . Since, again, the elements 1KfgKf generate HL(G(Af ),Kf ) this
observation allows one to interpret

im(HL(G(Af ),Kf )→ EndL(H i(SG(Kf ),Fξ)) (29)

as the ‘subalgebra of cohomology operations coming from Hecke correspondences’.

So, with the above set-up, the next refinement of Question 1.38 is then the following:

Question 1.44. Let G be a reductive group over Q and ξ an algebraic Q-representation
of G. Then, how do we describe H i(SG(Kf ),Fξ) as a HL(G(Af ))-module?

To give a simple yet satisfcatory answer to this question we will almost have to assume

that Gder is Q-anisotropic. In other words, in many cases below we are going to restrict
ourselves to the case when our locally symmetric spaces SG(Kf ) are compact. This
assumptions is useful in many ways:

(1) It allows for one to not have to worry about distinctions between cuspidal objects
(e.g. cohomology or automorphic representations) and non-cuspidal objects.

(2) Due to the mentioned simplifications in (1) we don’t need to worry very much
about the distiction between ‘smooth’ and ‘L2’ automorphic representations.

(3) It allows us to not have to worry about the Baily-Borel compactification of our
locally symmetric spaces.

(4) In a same vein to (3), it allows us to work with actual singular cohomology (resp.
étale cohomology) as opposed to L2-cohomology (resp. intersection cohomology).

The astute reader will notice that this anistropocity condition is quite strong and
precludes, for example, the consideration of some of the most obvious groups (e.g.
G = GL2). This is a huge restriction when one is interested in the global Langlands con-
jecture but, as it turns out, is usually a non-issue if one is interested in local Langlands.

The reason for this, roughly, is that while GLn does not satisfy this anisotropicity
assumption, it is the local component of a group that does. For example:

Example 1.45. Let D be a division algebra over Q of dimension n2 such that D is split at
p —such objects exist by the fundamental exact sequence of class field theory (see [Mil,
Theorem VIII.4.2]). Then, G := D× is a reductive group such that Gder is Q-anisotropic
but GQp = GLn,Qp .
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Remark 1.46. This example typifies a common theme in the study of local Langlands
by global methods. Namely, relating local objects for a group Gp over Qp to global
objects requires choosing a group G over Q such that GQp = Gp. One can often
times choose G to satisfy very powerful restrictions (e.g. some sort of anisotropicity
condition) that Gp does not itself satisfy.

If we are in the situation where Gder is Q-anisotropic then we have the following result
without any serious caveats:

“Theorem” 1.47 (Informal Matsushima’s formula). Let G be a reductive group over
Q such that Gder is Q-anisotropic. Then, the HL(G(Af ),Kf )-module H i(SG(Kf ),Fξ)
is semisimple and its simple constitutents are (the Kf -invariants) of (the finite part of)
automorphic representations of G.

This theorem is in scare quotes to scare away anyone willing to accept this informal
statement without asking what all of these terms mean! Let us now be more precise.

The first step is to define automorphic representations for G in this situation. Because
we are assuming that Gder is Q-anisotropic we are able to avoid many of the hairy details
that usually surround such definitions:

Theorem 1.48. Let χ : AG(R)+ → C× be a quasi-character. Then, the G(A) represen-
tation

L2(G(Q)\G(A), χ) :=

f : G(Q)\G(A)→ C :

(1) f(zg) = χ(z)f(g)for all z ∈ AG(R)+

(2) fχ−1 : [G]→ C is measurable

(3)

∫
[G]
|(fχ−1)(g)|2 dg <∞


(30)

(where (g · f)(x) := f(xg)) decomposes discretely. In other words, there exists a Hilbert
space decomposition

L2(G(Q)\G(A), χ) =
⊕̂
π

m(π)π (31)

where π runs over the irreducible unitary subrepresentations of L2(G(Q)\G(A), χ) and
m(π) is an integer.

Proof. For a proof of this result see [HG, Chapter 9]. �

Here we have abbreviated G(Q)\G(A)/AG(R)+ by [G] (the so-called adelic quotient
of G). One of the main reasons it’s useful to work with [G] opposed to G(Q)\G(A)
directly is that the former has finite volume and the latter needn’t (e.g. see [HG, §2.6]).

We then have the following simple definition:

Definition 1.49. Let G be a reductive group over Q such that Gder is Q-anisotropic.
Then, an automorphic representation of G (with central character χ) is an irreducible
unitary representation of G(A) occuring in the decomposition in Equation (31).
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Remark 1.50. What made this definition of automorphic representation so painless
and, in particular, why it’s consonant with the ‘smooth’ notion of automorphic rep-
resentations is precisely because Gder is Q-anisotropic. Namely, the operative thing
is that there is an analogue of Theorem 1.32. Namely, Gder is Q-anisotropic if and
only if [G] is compact—this makes the decomposition in Equation 31 possible. For
those more familiar with automorphic forms, another way to think about this is Gder

is Q-anisotropic implies that every element of L2([G]) is cuspidal (since there are no
proper rational parabolics). For more information see [HG, Chapter 9].

Let us internalize what we have just defined. For G a reductive group over Q the
group G(A) is a locally compact Hausdorff group containing G(Q) as a discrete subgroup.
This setting is precisely the setting in which abstract harmonic analysis takes place. In
essence, automorphic representations of G are the harmonic analytic representations of
G(A) (relative to the discrete subgroup G(Q).

Before we state the precise version of Matsushima’s formula we note the following
well-known theorem of Flath:

Theorem 1.51 (Flath [Fla79]). Let π be an automorphic representation of G. Then,
there is associated to π a tensor product

π∞ ⊗ π∞ (32)

where π∞ is an irreducible (g,Kmax
∞ )-module (where g := Lie(G(R))) for G(R) and π∞

is an irreducible smooth representation of G(Af ). Moreover, the choice of a smooth

reductive model G of G over Z[ 1
n ] induces a restricted tensor product decomposition

π∞ =
⊗′

p

πp (33)

where πp is an irreducible smooth representation of G(Qp) according to the decomposition
of topological groups

G(Af ) =
∏′

p

G(Qp) (34)

(as in [Con12, §3]). This decomposition is canoncially independent of the choice of G.

Proof. See [HG, §5.7] for a discussion of this theorem and, in particular, an explication
of the notation. Note that we have been careful not to write that the object in Equation
(32) is equal/isomorphic to π. What is actually true is that this object is isomorphic to
πsm,Kmax whereKmax is a (non-unique, even up to conjugacy) maximal compact subgroup
of G(A) and πsm,Kmax denote the set of smooth and Kmax-finite vectors in π. �

Remark 1.52. We don’t seek here to define what a (g,Kmax
∞ )-module is, noting only

that in rough terms it’s a representation of g ×Kmax
∞ for which the g-action and the

Kmax
∞ -action agree on Lie(Kmax

∞ ). For more details see [HG, §4.4].
That said, let us make a remark about the necessity of the (g,Kmax

∞ )-module in
the above theorem. It would be nice if one had a decomposition as in Equation (32)
where π∞ is actually a unitary representation of G(R). But, since the decomposition in
Equation (32) is of an algebraic nature, one needs to replace such analytically minded
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representations (i.e. representations on Hilbert spaces) with an algebraic substitute.
One should think of a (g,Kmax

∞ )-module as a sort of ‘algebraic model’ of an analytic
(i.e. unitary representation) of G(R). To make precise sense of this see [HG, Proposi-
tion 4.4.2] and see [HG, Theorem 4.4.4] to see why this operation is not losing much
information.

We now in the position to state Matsushima’s formula:

Theorem 1.53 (Matsushima’s formula). Let G be a reductive group over Q such that
Gder is Q-anisotropic and let ξ : GL → GL(V ) be a geometrically irreducible algebraic Q-
representation. Then, for ιL an embedding L ↪→ C and all i > 0 there is a decomposition
of HC(G(Af ),Kf )-modules

H i(SG(Kf ),Fξ ⊗ιL C) =
⊕
π

(π∞)Kf ⊗H i(aG\g,K∞;π∞ ⊗ VC) (35)

where π ranges over the automorphic representations of G which have central character
χ := (ξ |AG(R)+)−1.

Let us note several things about this theorem:

• The HC(G(Af ),Kf )-action on the right-hand side of Equation (35) is only on the
first factor of each summand. The second tensor factor only acts as a multiplicity
term.
• The HC(G(Af ),Kf )-modules (π∞)Kf are simple (as one can easily deduce from

the irreducibility of the G(Af )-representation π∞). Thus, we see that Ma-
tushima’s formula is telling us that H i(SG(Kf ),Fξ⊗ιLC) is a semisimple module
for HC(G(Af ),Kf ) and Equation (35) indicates its decomposition into simple
modules.
• Note that our embedding ιL allows us to view V ⊗ιLC (which we have abbreviated
VC in the above) as a G(C)-representation and thus a G(R)-representation. This
then produces in the usual way (e.g. see [HG, Proposition 4.4.2]) a (g,Kmax

∞ )-
module structure on VC (and thus a (g,K∞)-module structure). We then have
the (g,K∞)-module π∞ ⊗ VC (with the diagonal action). Since the AG(R)+-
characters of V and π∞ are inverses (by construction) we have that aG :=
Lie(AG(R)+) acts trivially on π∞ ⊗ VC which is why we can consider it as a
(aG\g,K∞)-module (note that K∞∩AG(R)+ is trivial and so K∞ is still a com-
pact subgroup of the connected component of G(R)/AG(R)+).
• This cohomology groupH i(aG\g,K∞;π∞⊗VC) should be read as “the (aG\g,K∞)-

cohomology of π∞ ⊗ VC”. It is a cohomology theory with a definition much as
the reader suspects (e.g. see [BW13, Chapter 1] for definitions). It is a finite
dimensional C-space.

We will not prove Theorem 1.53 citing [HG, §15.5] and the references therein. That
said, the idea is remarkably simple. Namely, to compute the cohomology of the local
system Fξ⊗ιLC one should, following de Rham’s theorem, tensor this local system with
the de Rham complex and take cohomology of the resulting de Rham-like-complex.
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Writing down these spaces of differentials one quickly relates it to certain smooth
functions

f : G(Q)\G(A)/AG(R)+Kf → C (36)

which already starts to look a lot like (the smooth and Kmax-finite vectors in) the space
L2(G(Q)\G(A), χ). More specifically, note that the pieces X+/Γ+ of SG(Kf ) inherit
natural differentials dxi from X+ since it’s diffeomorphic to Rn and so a typical element
of the de Rham complex for SG(Kf ) might consist of things of the form fdxi where
f is a function on SG(Kf ). By the very definition of SG(Kf ) these start to look like
functions on G(Q)\G(A).

Now, the differential fdxi only really cares about the smooth part of such a function
f = f∞f

∞ and so one quickly factors off the (π∞)Kf part. The remaining differential
on the π∞ part of this de Rham-like-complex part is quickly seen to be computing the
(aG\g,K∞)-cohomology of π∞ ⊗ VC, and that’s all she wrote.

In particular, the above indicates the following idea: automorphic representations are
naturally the objects which comprise the de Rham cohomology of locally symmetric
spaces. This, to me, makes their definition motivated even if one is not very interested
in harmonic analysis and/or number theory.

Let us note that the multiplicity factor associated to (π∞)Kf in Equation (35) is
agnostic to Kf . In particular, passing to the limit over Kf (and using that π∞ is
smooth) we obtain:

Corollary 1.54. Let G be a reductive group over Q such that Gder is Q-anisotropic and
let ξ : GL → GL(V ) be a geometrically irreducible algebraic Q-representation. Then,
for ιL and an embedding L ↪→ C and all i > 0 there is a decomposition of smooth
G(Af )-modules

H i(SG,Fξ) =
⊕
π

π∞ ⊗H i(aG\g,K∞;π∞ ⊗ VC)m(π) (37)

where π ranges over the automorphic representations of G which have central character
χ := (ξ |AG(R)+)−1.

Remark 1.55. Now, the above is stated in the case when the locally symmetric
spaces are compact. There are many ways to try and extend these results to the
general situation. For example, in the general case one can try to either

(1) Consider the so-called L2-cohomology of the Baily-Borel compactification (e.g.
see [BC+83]).

(2) Consider the same cohomology groups H i(SG(Kf ),Fξ) but modify precisely
what objects show up in the decomposition (e.g. see [Fra98]).

In both cases the issue is that in the case when [G] is not compact (i.e. when Gder is
not Q-anisotropic) automorphic forms have a ‘boundedness near boundary condition’
which requires that either

(1) You take cohomology of the Baily-Borel compactification and extend Fξ to a
sheaf and take a de Rham-like cohomology that cares only about ‘functions
bounded near the boundary components’.

(2) You englarge your space of automorphic forms/representations.
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The solution to (i) in the second list of two options is taken care of by (i) in the first
list of two options.

We would like to give an example of Corollary 1.54 but to do so in a reader friendly
way would probably require the reader to be very familiar with examples of compact
locally symmetric spaces (e.g. those furnished as in Example 1.9). We instead opt to
give an example which is not directly covered by Theorem 1.53 (because the Gder is Q-
anisotropic assumption doesn’t hold) but is in the realm of the L2-cohomology mentioned
in Remark 1.55:

Example 1.56. Before reading this example, we suggest that the reader consults [Buz] for
a discussion of the passage from classical modular forms to automorphic representations.
In particular, we will use the notation ϕf to denote the automorphic form associated to
f as in loc. cit. and πf will denote the GL2(A) orbit of f . Note that it’s very important
that we take the normalization s = 2− k in the discussion in [Buz, §2.3].

Take G = GL2. Then, as the groups K(N) from are cofinal in the system of compact
open subgroups of GL2(Af ) we see that SGL2 is nothing other than lim←−Y (N). Let us

define for each N and for each algebraic Q-representation ξ of GL2 the parabolic or
cuspidal cohomology to be the space

H1
! (Y (N),Fξ) := H1(X(N), j∗Fξ) (38)

where j : Y (N) ↪→ X(N) is the inclusion of Y (N) into its smooth proper algebraic
compactification X(N). This is, in fact, an example of L2 (or intersection cohomology).

The analogue of Corollary 1.54 is then the following decomposition for k > 2:

lim−→
N

H1(X(N), j∗Fξk) =
⊕
f

π(f)∞ ⊗H1(aGL2\gl2, so(2);π(f)∞ ⊗ Vk)m(π) (39)

Let us explain the terminology here:

• ξk : GL2 → GL(Vk) is the representation Symk−2(Q2) (where Q2 is the standard
representation of GL2).
• f ranges over the cuspidal eigen-newforms in Sk(Γ(N)) as N ranges.

And, for a fixed N we get the analogue of Theorem 1.53:

H1(X(N), j∗Fξ) =
⊕
f

(π(f)∞)K(N) ⊗H1(aGL2\gl2, so(2);π(f)∞ ⊗ Vk)m(π) (40)

where f travels over the eigen-newforms of level dividingN (i.e. eigenforms in Sk(Γ(N))).
Now, the Weak Multiplicity One theorem for GL2 says that m(π) = 1 (e.g. see

[HG, Theorem 11.3.4]) and the Strong Multiplicity One theorem for GL2 (e.g. see [HG,

Theorem 11.7.2] or [Sai13, Theorem 2.49.(2)]) says that (π(f)∞)K(N) is precisely Cϕf if
f is a newform of level N . In general, Atkin-Lehner theory (e.g. see [DDT95, Theorem

1.22]) says that if f is a newform of level Nf | N then (π(f)∞)K(N) is spanned by the

linear independent functions ϕfd for d | NNf where fd(z) := f(zd).

We can see what is going ‘by hand’ in the case when k = 2. Namely, in this case
note that Fξk is nothing other than the constant sheaf C. Note moreover that since
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j : Y (N) ↪→ X(N) is an embedding of a puncutured curve that j∗C = C. Thus, we see
that H1

! (Y (N),Fξi) is nothing other than H1(X(N),C). Then, we see from (40) that

H1(X(N),C) =
⊕
f

⊕
d| N
Nf

Cϕfa

⊗H1(aGL2\gl2, so(2);π(f)∞) (41)

where f travels over the eigennewforms of level dividing N .
One can check that this Lie algebra cohomology is 2-dimensional and thus, appealing

again to Atkin-Lehner theory, we see that

H1(X(N),C) ∼= S2(Γ(N))⊕ S2(Γ(N))) (42)

as HC(GL2(Af ),K(N))-modules. But, in fact, there is another way to see this. Namely,
by Hodge theory we know that we have a canonical decomposition

H1(X(N),C) ∼= H0(X(N),Ω1
X(N)/C)⊕H0(X(N),Ω1

X(N)C) (43)

Recall though that the association f 7→ f dz defines an isomorphism

S2(Γ(N)) ∼= H0(X(N),Ω1
X(N)C) (44)

(e.g. see [DDT95, Lemma 1.12]). One can then transform (43) to the statement

H1(X(N),C) = S2(Γ(N))⊕ S2(Γ(N)) (45)

which, with some work, can be shown to be HC(GL2(Af ),K(N))-equivariant. Thus, we
see that Matsushima’s formula in this case is nothing more than Hodge theory!

Remark 1.57. In general Matsushima’s formula can be thought about as an expres-
sion of de Rhram cohomology on a locally symmetric space. If that locally symmetric
space has a complex structure one can try and carry out Hodge theory in a similar
way (in fact one can do this in general since locally symmetric spaces are canonically
Riemannian manifolds). For example, see [BW13, Remark VII.3.5.(2)]).

Now, while we have Matushima’s formula for the locally symmetric spaces for G we
still feel far away from relating Galois representations to automorphic representations of
G. To do this, it would be nice if we had some sort Galois action on the cohomology
groups H i(SG(Kf ),Fξ) which commutes with the Hecke action. To do this the most
reasonable way would be assume that

(1) The spaces SG(Kf ) have the structure of a complex manifold such that the maps
from Equation 18 are holomorphic.

(2) Furthermore, the complex manifolds SG(Kf ) are algebraic such that the maps
from Equation 18 are algebraic.

(3) The algebraic varieties SG(Kf ) have models over a number field (independent of
Kf ) such that the maps from Equation 18 descend to these models.

in which case such a Galois action would (up to slightly modifying the coefficients) come
from Grothendieck’s work on étale cohomology.

Of course, this cannot happen in general as the following classical/simple observation
shows:
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Example 1.58. For every n > 1 we have that

dimXGLn = dim GLn(R)− dim SOn(R)− dimAGL2(R)+

= n2 − n(n− 1)

2
= 1

=
n(n+ 1)

2
− 1

(46)

In particular, we see that dimXGLn is odd whenever n = 0 mod 4 or n = 3 mod 4.

But, note that, in general, dimSG(Kf ) = dimXG for any G and any Kf and so, in
particular, the above example shows that dimSGLn(Kf ) is odd whenever n = 0 mod 4
or n = 3 mod 4 independent of what Kf . Thus, there is no hope of fulfilling property
(1) in the above in this case (let alone properties (2) and (3)).

That said, there are certainly some examples of groups G where all three of these
properties can be acheived (e.g. see Example 1.30 and Example 1.19). In fact, there
is a very satisfactory general theory of particular groups G for which all three of these
properties can be acheived. Namely, one can think of the notion of Shimura varieties as
being a very insightful way (due originally to Shimura and then formalized by Deligne
in [Del71b]) to ensure that these three conditions are satisfied. I will not formally define
Shimura variety (for this see [Del71b], [Del79], [Mil04], or [Lan17]) and instead just now
assume that G is a group for which the three properties above are acheived.

Remark 1.59. Note that G which appear in the context of Shimura varieties are not
the only G for which properties (1), (2) and (3) can be acheived. That said, it is a
fairly broad family that is useful in many applications.

Note also that to fulfill (1), (2), and (3) in the context of Shimura varieties one
needs to choose a bit more than just the choice of a G and a K∞. Namely, one picks a
certain transitive G(R)-space X for which K∞ is then obtained as the stabilizer of the
action of G(R) on a point of x. So, the X in the theory of Shimura varieties begets
the K∞. Now, it is true that, using the language of Shimura varieties, the system of
SG(Kf ,K∞) (for the K∞ mentioned above) is isomorphic as a system of real manifolds
to ShKf (G,X). But, the complex structure on SG(Kf ,K∞) in this case depends on
an identification with ShKf (G,X) and, in particular, the choice of X.

This can be seen very clearly by considering the group so that GR = U(a, b) where
a 6= b. It turns out that in this situation there are essentially two choices of X both of
which have underlying system SG(Kf ) of smooth manifolds but for which the complex
structure differs.

Let us give an example of the type of group which has a Shimura variety that will
factor heavily in to the work of the author and A. Bertoloni Meli:

Example 1.60. Let E/F be a CM extension of number fields (i.e. F is totally real and
E is an imaginary quadratic extension of F ). Let N > 1 and integer and let UE/F (N)∗

the algebraic F group defined by

UE/F (N)∗(R) := {g ∈ GLN (En ⊗R) : 〈gx, gy〉∗N = 〈x, y〉∗N for all x, y ∈ RN} (47)
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here 〈−,−〉∗N is the following pairing:

〈x, y〉∗N := x>JNy (48)

where

JN =



0 · · · 0 0 1
0 · · · 0 −1 0
0 · · · 1 0 0
... . .

.
. .
.

0 0

0 · · ·
... 0 0

(−1)N−1 0 · · · 0 0


(49)

and x> denotes the conjugate transpose (where conjugation on En ⊗F R is inherited
from the conjugation action of E (i.e. the action of the non-trivial element of Gal(E/F ).

Let U be any inner form of UE/F (N)∗ such that U(F ⊗Q R) is not compact. Then,
G := ResF/QU is a group appearing in the theory of Shimura varieties. We will often
times call the locally symmetric spaces for U unitary Shimura varieties.

Remark 1.61. Note that, as in Remark 1.59, to really give this example the structures
mentioned in (1), (2), and (3) above we should specify the X that is in the data of a
Shimura datum. Since this won’t matter much here we will ignore this point.

Let us now suppose that G is a group for which (1), (2), and (3) are possible and,
moreover, have been specified (i.e. an algebraic structure of a number field has been
given). Let us call this number field E. Let us denote (very unconventionally) the
algebraic model of SG(Kf ) over E by ShG(Kf ) (evoking the notion of Shimura varieties
even though we aren’t strictly assuming that G is contained within the framework of
Shimura varieties).

Let us fix a prime number ` and an isomorphism ι : C ∼= Q`. Then, note that our
embedding ιL : L ↪→ C then gives us (after post composing with ι) an embedding L ↪→ Q`

which we will (sloppily) also call ιL. Note then that Fξ,Kf ⊗ιL Q` is a Q`-local system

on SG(Kf ). One can show that, in fact, this local system descends to a lisse Q`-sheaf
on E-variety ShG(Kf ).

Note then that we can form the étale cohomology groups H i
ét(ShG(Kf ),Fξ ⊗ιL Q`)

(where for variety X over a field k and a lisse Q`-sheaf F on X we abbreviate the
cohomology group H i((Xksep)ét,Fksep) to H i

ét(X,F )). This is, thanks to the work of

Grothendieck and his collaborators, a finite-dimensional Q`-representation of ΓE . Let
us set

H i
ét(ShG,Fξ ⊗ιL Q`) := lim−→H i

ét(ShG(Kf ),Fξ ⊗ιL Q`) (50)

This space naturally has an action by G(Af ) which, since we assumed that our G(Af )
action descends to E, commutes with ΓE and thus we get a ΓE ×G(Af ) action.

Now, by combining the smooth base change theorem with Artin’s comparison theorem
we have that

H i
ét(ShG,Fξ ⊗ιL ⊗Q`) ∼= H i(SG,Fξ ⊗ιL Q`) (51)
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which is G(Af )-equivariant. If we then use our isomorphism ι : C ∼= Q` we get an
isomorphism

H i
ét(ShG,Fξ ⊗ιL ⊗Q`) ∼= H i(SG,Fξ ⊗ιL C) (52)

Now, if we assume further that Gder is Q-anisotropic then by Corollary 1.54 we have a
decomposition

H i(SG,Fξ ⊗ιL C) ∼=
⊕
π∞

π∞ ⊗ σi(π∞) (53)

where we have grouped together terms indexed by π which have isomorphic finite parts
π∞. Namely, note that while this can’t happen for GLn it is possible for general G that
π1 6∼= π2 but π∞1

∼= π∞2 ( in which case we say that G doesn’t have the strong multiplicity
one property), and so now the sum is over all π∞ for which there exists a π∞ such that
π = π∞ ⊗ π∞ occurs in Corollary 1.53. By a finiteness result of Harish-Chandra the
number of π with a given isomorphism class of π∞ is finite, and so this multiplicity term
σi(π∞) is finite-dimensional.

So, in summary, under our hypotheses that Gder is Q-anisotropic (and our assumption
G satisfies assumptions (1), (2), and (3)) we have an isomorphism of abelian groups

H i
ét(ShG,Fξ ⊗ιL Q`) ∼=

⊕
π∞

π∞ ⊗ σi(π∞) (54)

which is G(Af )-equivariant and which is an isomorphism of vector spaces via the isomor-

phism ι : C ∼= Q`. In particular, since σi(π∞) is the multiplicity term of an irreducible
component of the G(Af ) action of H i

ét(ShG,Fξ ⊗ιL Q`) and the action of ΓE commutes
with the action of G(Af ) we see that ΓE stabilizes σi(π∞).

In other words, we see that using the cohomology of ‘compact Shimura varieties’ (or
any system of locally symmetric spaces satisfying (1), (2), and (3)) we have realized our
meta-principle from §1.1. Namely, we have found a vector space on which Gal(Q/Q) (or
really Gal(Q/E)) and G(A) (or really G(Af )) act for which:

• The actions commute (by our assumptions (1), (2), and (3)).
• The G(Af )-module is semi-simple (using Theorem 1.53).

And so, in particular, we have figured out a way to associate to an automorphic repre-
sentation π of G(A) a Galois representation

π  π∞  σi(π∞) (55)

which is precisely what we wanted to do!
To give an example of this in situation where Gder is Q-anisotropic has the same

pitfalls as mentioned before Example 1.56. But, we can do the following:

Example 1.62. One can use the decomposition in Equation 39 to obtain a decomposition⊕
f

π(f)∞ ⊗ σ1(π(f)∞) (56)

Note that since GL2 does satisfy the strong multiplicity one property the indexing set
needn’t change. In fact, we see that σ1(π(f)∞) is a 2-dimensional Q`-representation.
One can then show, in fact, that this is the Galois representation ρf constructed by
Deligne in [Del71a].
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We now summarize the above discussion:

• Automorphic representations of G are certain harmonic analytic representations
of G(A).
• They show up naturally as the de Rham cohomology of certain symmetric spaces

for G (which roughly are real manifolds obtained by ‘arithmetic quotients’ of
G(R)) as made precise (in certain cases) by Theorem 1.53.
• When G is covered by the framework of Shimura varieties (or more generally

when the symmetric spaces have nice algebraic models over number fields) one
can combine Matsushima’s formula and Grothendieck’s theory of étale cohomol-
ogy to associate Galois representations to automorphic representations of G.

So, hopefully then the arrow in Equation (2) doesn’t seem so far-fetched to the reader.
The idea that a local Langlands correspondence should exist is quite natural if one
believes in a global Langlands like correspondence. Indeed, if π is an automorphic
representation of G then by Theorem 1.51 it has local constituents πp for every prime
p. Now if GLC(π) is some Galois representation associated to p this also has local
constitudents GLC(π)WQp for all primes p. One then might imagine that an association

π 7→ GLC(π) is some sort of gluing together of local correspondences πp 7→ LLC(πp) in
such a way that LLC(πp) = GLC(π) |WQp (i.e. local-global compatability).

2. Part II: A taster of results and applications

2.1. Motivation. From Part I we know that, at least when G is sufficiently nice (i.e.
is contained within the theory of Shimura varieties and satisfies the assumption that
Gder is Q-anisotropic) we can associate to autormorphic representations π of G Galois
representations σi(πf ). While all of the work in Part I was to have this, and we were
quite excited to have seen it was doable, a lot of work is left to be done. Namely, we
have the following questions in decreasing level of difficulty:

• Is σi(πf ) directly related to the Langlands conjecture?
• Can we understand σi(πf ) directly in terms of properties of π?
• Is σi(πf ) even non-trivial (i.e. not a direct sum of trivial respresentations of ΓE).

Obviously we expect this third bullet to be true since the spaces ShG(Kf ) are interesting
(and it’s not hard to check that the third bullet has a positive answer just geometrically).
The goal of Part II is to explain how people have attempted to understand this problem
and how it can be used to understand the local Langlands conjecture. This part will, out
of necessity, be much less rigorous. Throughout much of the following I will implicitly
be assuming that Gder is Q-anisotropic and simply connected.

Remark 2.1. This assumption that Gder is simply connected is one that consistently
comes up when working with the Arthur-Selberg trace formula and ideas in its ideo-
logical orbit. The literal reason is the following funny result of Steinberg: let γ ∈ G(Q)
be semisimple, then the centralizer Zγ(G) is connected if Gder is simply connected (as
an exercises, show that this fails if, for example, G = PGL2). This makes the theory of
so-called stable conjugacy simpler and, in turn, makes the study of the Arthur-Selberg
trace formula simpler. It also makes the formula showing up in Theorem 2.7 simpler.
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2.2. The Langlands-Kottwitz method. The idea of Langlands, later greatly ex-
tended and clarified by Kottwitz is that one might able to understand the σi(πf ) by
point counting. More explicitly, let us make the definition

H∗(ShG,Fξ) :=

2 dimXG∑
i=0

(−1)iH i(ShG,Fξ) (57)

in the Grothendieck group of Q`[G(Af )×ΓE ]-modules. In fact, using Corollary 1.54 (or
more accurately the discussion surrounding Equation (54)) we can write H∗(ShG,Fξ)
as follows

H∗(ShG,Fξ) =
⊕
π∞

π∞ ⊗ σ∗(π∞) (58)

where σ∗(π∞) is the virtual Q`-representation

σ∗(π∞) =

2 dimXG∑
i=0

(−1)iσi(π∞) (59)

of ΓE .

Remark 2.2. The reason for consider this virtual representation will soon be clear,
but let us remark that the reaction to its introduction is likely negative. Namely, we
are interested in producing honest Galois representations, not virtual representations.
One can often times surpass this issue, especially if one is interested in the local Lang-
lands conjecture. Namely, for sufficiently nice global representations (for which a local
representation can very often be embedded in as a component) and sufficiently nice ξ
(which again is a situation one can usually finagle yourself in to if you’re interested
in local results) σi(π∞) will vanish for i 6= dim ShG. For example, see the results of
[VZ84]. This then shows that σ∗(πf ) is nothing more than (−1)dim ShGσdim ShG(πf )
which is essentially just a representation.

The goal of the Langlands-Kottwitz method can now be more slightly more precisely
stated as:

Question 2.3. Can we explicitly describe the trace of the ΓE×G(Af )-action on H∗(ShG,Fξ)
in terms similar to the traces of automorphic representations?

Note that studying the ΓE×G(Af ) action on H∗(ShG,Fξ) is essentially equivalent to
studying the ΓE ×HQ`(G(Af ))-action and so we shall conflate the two. In particular,

we will often times denote a generic element of ΓE×HQ`(G(Af )) by τ ×f∞ and discuss
the trace of such an object.

To understand why this is useful to study σ∗(π∞) we make the following observation.
One can, essentially as a corollary of strong versions of the Jacobson density theorem,
find for a particular π∞0 a function f∞0 such that f∞0 acts on H i(ShG,Fξ), for each
i ∈ {0, . . . , 2 dimXG}, as the projector to its π∞0 component. One can then see quite
easily that for any Galois group element τ ∈ ΓE we have that

tr(τ × f∞0 | H∗(ShG,Fξ)) = tr(τ | σ∗(πf )) (60)
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and so if we can describe the traces of the G(Af )×ΓE-action on H∗(ShG,Fξ) well then
we can, by Equation 60, describe the trace of ΓE on σ∗(πf )) which is (ignoring the
important distinction between virtual representations and true representations) enough
to characterize σ∗(πf ) by the Brauer-Nesbitt theorem.

OK, so now we understand why Question 2.3 is useful to understanding σ∗(πf ). But
what sort of answer are we looking for? Namely, how can we qualify ‘similar to the
traces of automorphic representations’? The answer is given by the Arthur-Selberg
trace formula. This formula is famously difficult to state in any great level of generality,
but in the situation we are in (where our Gder simply connected and Q-anisotropic holds)
things are not so bad:

Theorem 2.4. Let χ be a quasi-character of AG(R)+ and let f ∈ HC(G(Af ), χ−1)
(i.e. f is a smooth C-valued function on G(Af ) such that fχ is compactly supported on
G(A)/AG(R)+). Then, ∑

π

m(π)tr(f | π) =
∑
{γ}

vγOγ(f) (61)

where π runs over the automorphic representations for G with central character χ.

Here {γ} is running over conjugacy classes in G(Q), vγ is a volume term, and Oγ(f)
is an orbital integral which, surprise, is the integral of f over the orbit of γ in G(A). For
a more precise setup for these terms, see [HG].

So, a more precise version of Question 2.3 would be:

Question 2.5. Can we explicitly describe the trace of the G(Af )×ΓE-action on H∗(ShG,Fξ)
in terms of sums of orbital integrals?

The answer to this question a resounding yes when ShG are certain types of PEL
type Shimura varieties and we considering τ and f∞ are of a particular type. PEL type
means, roughly, Shimura varieties which can be described in terms of moduli spaces of
abelian varieties with extra structure: polarizations and endomorphisms, thus the ‘PE’
(the ‘L’ stands for level as in the compact open subgroup Kf—probably the phrase ‘PE
Shimura varieties’ would be less confusing). For GL2 this was essentially carried out by
Langlands in many cases in [Lan79] and extended to many PEL cases by Kottwitz in
[Kot92b].

What is the restriction on τ × f∞? Well, essentially what is needed is:

• τ needs to lie in the weil group WEp at some prime p lying over a prime p of Q.
• f∞ = fp1G(Zp) where fp is some function on G(Apf ) and 1G(Zp) is the indicator

function on the maximal compact subgroup G(Zp) of G(Qp) where G is some
reductive model ofG over Zp (such subgroups G(Zp) are called hyperspecial—they
are, in general, not unique up to conjugacy).

Why are these conditions important? Well, note that if fp is in HQ`(G(Af ),Kp) for

some compact open subgroup Kp ⊆ G(Apf ) (where Apf is the ring of finite adeles with

trivial p-component) then the action of τ × fp1G(Zp) on H∗(ShG,Fξ) can essentially be
thought of as the action of τ × fp on H∗(ShG(KpG(Zp)),Fξ). Since τ is in WEp we may
as well think of this as the action of τ × fp on H∗(ShG(KpG(Zp))Ep ,Fξ).
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The crucial point is then this: the fact that the ‘level at p’ of ShG(KpG(Zp)) is the
hyperspecial subgroup G(Zp) means that the Shimura variety has good reduction. Less
cryptically, there is a smooth proper ‘canonical model’ SG(Kp) of ShG(KpG(Zp)) over
OEp and the sheaf Fξ and the action of fp also have smooth models. Since we are
in the proper case we can then use smooth proper base change to relate the trace of
τ × fp on H∗(ShG(KpG(Zp)),Fξ) to the trace of τ × fp on H∗(SG(Kp)Fp ,Fξ). This is

then the trace of a correspondence (see Remark 1.43) and thus can be computed using
the Fujiwara-Varshavsky trace formula (e.g. see [Var07]) which is a generalization of
then Grothendieck-Lefschetz trace formula to the case of correspondences which gives a
‘weighted point count’ of the fixed points of the correspondence.

Why are we then getting orbital integrals? Let’s restrict to the case when G = GL2

(even though this does not satisfy our Gder Q-anisotropic assumption) to get an idea.
Note then that we are essentially trying to count elliptic curves over finite fields with
level structure. Note that by Honda-Tate theory (see [Eis]) the isogeny classes of elliptic
curves over finite fields are classified by semisimple conjugacy classes in GL2(Q) (the
unique semisimple conjugacy class which has characteristic polynomial the same as the
characteristic polynomial of Frob on the Tate module of the elliptic curve). Then,
counting elliptic curves isogenous to some fixed E0 comes down to counting lattices in

the adelic Tate module
∏
`

V`(E0). But such lattices are something like GL2(Af )/GL2(Ẑ)

which looks like an orbit of a group action or, with a little more though, weighted orbital
integral vγOγ . So, the total count looks something like

Total count =
∑

isog. classes

(count within isog. class) =
∑
{γ}

vγOγ (62)

which is exactly what we’re after.

Remark 2.6. The last part of the explanation is possibly confusingly reductive. To
see what happens in a much more precise, but still reader friendly, way see [Sch11].
In particular, you don’t really get a sum of orbital integrals, you get a sum of terms
which are the product of a volume term, an orbital integral, a twisted orbital integral,
and a trace. See Theorem 2.7 below for a better idea.

The results of Langlands-Kottwitz have been extended to an immense degree in recent
years. The most general such statement is the following forthcoming result of Kisin-Shin-
Zhu:

“Theorem” 2.7 ([KSZ]). Assume that ShG is of abelian type. Then, there is an equality
of the form

tr(τ × fp1G(Zp) | H∗(ShG,Fξ)) =
∑

(γ0;γ,δ)

vγ0Oγ(fp)TOδ(1G(Z
pj

))tr(ξ(γ0)) (63)

Remark 2.8. The reason that this theorem is in scare quotes is that it’s tremendously
more complicated than what is literally written, but this gives a rough idea of the
content. For example, beyond the massive technical simplifications we have made we
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have, in particular, greatly simplified the statement slightly than what is in [KSZ]
because of our assumption that Gder is simply connected and anisotropic.

Here Shimura varieties of abelian type are a large class of Shimura varieties singled by
Deligne in [Del79] and for which the vast majority of commonly encountered Shimura
varieties are contained in. There is a containment of generality{

PEL type
Shimura varieties

}
(
{

Hodge type
Shimura varieties

}
(
{

Abelian type
Shimura varieties

}
( {Shimura varieties}

(64)
The Shimura varieties from Example 1.19 and Example 1.60 are abelian type but not
even Hodge type.

The proof of Theorem 2.7, including the papers leading up to the actual paper [KSZ],
is a tour de force of algebraic geometry, group theory, and p-adic Hodge theory. Its
outline, pitifully lacking in well-deserved attributions and explanation, is as follows:

(1) Show the existence of good smooth models of Shimura varieties at p in the case
of hyperspecial level at p. This was completed by Kisin in [Kis10].

(2) Show that the points of these models can be indexed into isogeny classes (a gen-
eralization of Honda-Tate theory) and can be parameterized group theoretically
within a conjugacy class. This is the so-called Langlands-Rapoport conjecture
and was finished by Kisin in [Kis17].

(3) Use the paramterization in (2) to acutally obtain a formula as in Equation (63).
This was completed in [KSZ].

So, at least for abelian type Shimura varieties and in cases of good reduction, the answer
to Question 2.5 has been answered.

2.3. The Langlands-Kottwitz-Scholze method. Let us note that the Langlands-
Kottwitz method is good enough to characterize σ∗(π) by Brauer-Nesbitt and the Ceb-
otarev density theorem (ignoring the important distinction between virtual and actual
representations) since the ‘good reduction’ hypotheses needed to apply Theorem 2.7
are true for almost all p. But, such a method is woefully insufficient to handle local
questions.

Namely, an idea of how to associate a Galois representation to an admissible repre-
sentation πp of Gp(Qp), where Gp is some reductive group over Qp, would be as folows:

(1) First realize Gp as GQp for some group G over Q which fits into the framework
for Shimura varieties.

(2) Find an automorphic representation π of G whose pth-component is πp.
(3) Get the ΓE-representation σ∗(πf ) (really a virtual representation, but we ignore

this).
(4) Consider σ∗(πp) := σ∗(πf ) |WEp

.

Each of these steps, if even doable, is quite difficult (most notably (2)). But, even if you
could do it, you couldn’t use the Langlands-Kottwitz method to get a good handle on
σ∗(πp). Namely, by its very nature, the Langlands-Kottwitz method can only tell you
about the natural of tr(τ | σ∗(πf )) at places of good reduction or, in other words, when
σ∗(πf ) is unramified.
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Again, globally this is a non-issue since representations are determined by their re-
strictions to the cofinitely many places they are unramified but if you are interested in
working locally this forces you to deal only with unramified Galois representations and
unramified representations of G(Qp).

To fix this one would like a version of Theorem 2.7 where one is allowed to replace
1G(Zp) with a function like 1Kp where Kp is an small compact open subgroup of G(Zp)
(which corresponds to considering representations with arbitrarily large ramification).
The realization of Scholze was that one can replace this 1G(Zp) on the left-hand side
of Equation (63) with h a function of arbitrarily level Kp ⊆ G(Zp) if one is willing to
replace that 1G(Z

pj
) by a non-explicit, possibly very complicated, function.

Namely, we have the following result of Scholze:

“Theorem” 2.9 ([Sch13a]). Assume that ShG is of some special types. Then, there is
an equality of the form

tr(τ × fph) | H∗(ShG,Fξ)) =
∑

(γ0;γ,δ)

vγ0Oγ(fp)TOδ(φτ,h)tr(ξ(γ0)) (65)

for some function φτ,h and moreover this function φτ,h depends only on data at p.

The ‘special types’ listed above include many cases of Shimura varieties of PEL type,
for example, but is far from including all Shimura varieties of abelian type. This function
φτ,h is constructed in terms of the cohomology of deformation spaces of p-divisible groups
with extra structure (a disk inside of a certain Rapoport-Zink spaces of PEL type) which
depends only on GQp (and several other ‘at p’ pieces of data). The proof of Theorem
2.9 essentially built off the work of Kottwitz in [Kot92b]

Of course, it would be nice to extend the results of Theorem 2.9 building off of the
results in [KSZ] in a similar way to how [Sch13a] built off the results of [Kot92b]. This
was done by the author in his thesis:

“Theorem” 2.10 ([You19]). Assume that ShG is of abelian type. Then, there is an
equality of the form

tr(τ × fph) | H∗(ShG,Fξ)) =
∑

(γ0;γ,δ)

vγ0Oγ(fp)TOδ(φτ,h)tr(ξ(γ0)) (66)

for some function φτ,h and moreover this function φτ,h depends only on data at p.

Remark 2.11. Note that I am being incredibly sloppy in the above. Namely, the
function φτ,h depends on the choice of a reductive model G of GQp over Zp and a
dominant cocharacter µ of G. In particular, φτ,h depends on GQp .

2.4. The Scholze-Shin conjecture and the cohomology of unitary Shimura
varieties. While the above discussion is nice, we have yet to actually discuss in what
way the representations σ∗(πf ) or the cohomology H∗(ShG,Fξ) has anything to do with
the actual Langlands conjecture. We now remedy this.

Remark 2.12. We by no means want to imply that the following are the only results
in the direction of understanding the relationship between the cohomology of Shimura
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varieties and the Langlands program. For instance, a conjecture about the precise
relationship (at least in the case when Gder is simply connected and Q-anisotropic)
goes all the way back to Kottwitz’s 1990 paper [Kot90] in the Ann Arbor proceedings.
Great work has been done towards giving non-conjectural results in this direction since.
There are countless names that could be listed in this pursuit (in no particular order):
Kottwitz, Harris, Taylor, Lan, Thorne, Shin, Scholze, . . . As an example to see what
work has been done on unitary similitude Shimura varieties, those which have been
historically the most fertile examples, one can see the ‘Paris Book Project’ by Harris
et al. soon to have both volumes published by Cambridge University Press.

The functions φτ,h from Theorem 2.9 (and Theorem 2.10) were begotten from a study
of H∗(ShG,Fξ), even though (as stated in these theorems) they are purely local objects
in nature), and so if one imagines that H∗(ShG,Fξ) has anything to do with the global
Langlands correspondence, one might imagine that φτ,h has something to do with the
local Langlands correspondence.

This is verified, in great form, by Scholze (in his masters thesis! ):

“Theorem” 2.13 ([Sch13b]). Let fτ,h be the transfer of the function φτ,h from Theorem
2.9 associated to the local group ResF/QpGLn,F . Then, there is a unique association
πp 7→ L(πp) from smooth representations of G(Qp) to `-adic Galois representations of
ΓF such that for every function h (as in Theorem 2.9) and τ ∈WQp the equality

tr(fτ,h | πp) = tr(h | πp)tr(τ | L(πp)) (67)

holds. Moreover, this association πp 7→ L(πp) is the local Langlands conjecture for
ResF/QpGLn,F .

Remark 2.14. Above we have apparently changed from functions φτ,h in Theorem
2.13 to functions fτ,h. The relationship between them is a matter of ‘base change’.
In very broad terms φτ,h is a function on G(Qpj ) for some j and fτ,h is a ‘matching
function’ on G(Qp) where ‘matching’ means that the (twisted) orbital integrals of the
former match the (stable) orbital integrals of the latter.

Remark 2.15. Note that the local Langlands conjecture for ResF/QpGLn,F was a
theorem of Harris-Taylor (see [HT01]) from 2001. So, Theorem 2.13 is a reproof of the
local Langlands conjecture in this case.

This theorem is quite remarkable. The local Langlands conjecture has generally been
quite complicated to characterize even in the case of GLn. Usually there are 5 properties
that a bijection needs to satisfy to be the local Langlands conjecture. The fact that
there is a class of geometrically defined function that controls the entire correspondence
is incredible. It has also been very useful in studying local Langlands in ways that the
original formulation has proven cumbersome (e.g. see [JNS17]).

The natural question one has next is:

Question 2.16. To what extent does Theorem 2.13 hold for other groups?
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In [SS13] Scholze and S. Shin formulated a generalization of the equality given in
Equation (67). Namely:

Conjecture 2.17 ([SS13]). Let G be an unramified group over Qp with Zp-model G
and let µ be a dominant cocharacter of GQp with reflex field E. Let τ ∈ WQp and let

h ∈ C∞c (G(Zp)). Let (H, s, η) be an endoscopic group for G and let hH be the transfer
of h. Then, for every tempered L-parameter ϕ with associated semi-simple parameter λ
we have

SΘϕ(fHτ,h) = tr
(
s−1τ | (r−µ ◦ η ◦ λ |WE

| · |−〈ρ,µ〉E

)
SΘϕ(h). (68)

Remark 2.18. In [SS13] the groups under consideration were those covered in [Sch13a]
but one can easily extend this conjecture, verbatim, to the case of any group covered
in [You19].

We have chosen, because it will be important momentarily, to state the conjecture
rigorously. But, in this form, it’s not entirely evident what the exact relationship between
Equation (68) and Equation (67) are. The point is that ResF/QpGLn,F satisfies three
incredibly nice properties that general groups do not:

(1) It has singleton L-packets (i.e. LLC is a bijection, not a finite-to-one map).
(2) One needn’t consider endoscopic groups to characterize the Langlands correspon-

dence.
(3) The identity map is an (irreducible) representation of GLn.

Adjusting Equation (67) to account for these differences essentially accounts for Equation
(68) in the following way:

(1) Before one needed only consider tr(fτ,h | π) because π is the only element of the

packet of LLC(π). But, for general G we have to take a sum
∑

π′∈Π(π)

tr(fτ,h | π)

where Π(π) is the L-packet at π. This term SΘϕ in Equation (68) is, essentially,
such a sum over the packet.

(2) To get an actually powerful statement one must consider endoscopic groups of
G. Think about these as groups which are candidate groups for LG valued
Galois representations to factor through. An LG valued Galois representation is
only really pinned down well once one knows the ‘minimal’ endoscopic group it
transfers through. So, in Conjecture 2.17 the allowance of this extra endoscopic
freedom is key. If one takes the ‘trivial endoscopic triple’ (G, id, e) one recovers
much what was in Equation (67).

(3) In general the local Langlands conjecture has LG-valued Galois representations
(roughly). These don’t have traces, and so one must compose this with a rep-
resentation of LG before taking trace. This the r−µ in Equation (68). In the
case of GLn one could take standard reprsentation which is what happened in
Equation (67).

We can then summarize the work of author and A. Bertoloni Meli as follows:

Theorem 2.19 (Bertoloni Meli–Y.). Conjecture 2.17 is true when G is an unramified
unitary group and (H, s, η) is the trivial endoscopic triple (G, id, e).



THE COHOMOLOGY OF SHIMURA VARIETIES AND THE LANGLANDS CORRESPONDENCE 31

Remark 2.20. Note that for Conjecture 2.17 to make sense, and consequently for
Theorem 2.19 to make sense, one needs to know the local Langlands conjecture for G.
In this context, that of quasi-split unitary groups, this is a result of Mok in [Mok15].

We don’t have enough space to explain the proof of theorem in any detail. But,
let us say that one essentially follows the 4 step procedure laid out at the beginning
of this subsection with special care given to choosing the group G in step (1) to have
no ‘global relevant endoscopy’. One then does a pseudo-stabilization technique as in
[Kot92a] together with the deep results in [Shi11] and [KMSW14] to prove the result.

Remark 2.21. We remark that what is nice about Theorem 2.19 is that it is the
first instance of a proven case of the Scholze–Shin conjecture in which endoscopy
played a role. Namely, the previously known cases of the Scholze–Shin conjecture were
for groups, roughly, of the form ResF/QpGLn,F as in [SS13] as well as version of the

Scholze–Shin conjecture in the case when G = D× as in [She19].
We also remark that the authors are currently in the process of removing the as-

sumption that (H, s, η) is the trivial endoscopic triple.

To bring everything full circle, we note that one of the key results needed to prove
Theorem 2.19 are precise descriptions of the representations σ∗(π∞) in some situations.
Namely, we have the following result:

Theorem 2.22. (Kottwitz, Bertoloni Meli–Y.) Let G be a reductive group over Q which
has no relevant endoscopy and for which Gder is Q-anisotropic and simply connected.
Suppose that ShG is a Shimura variety associated G with reflex field E. Then, for
any irreducible algebraic Q`-representation ξ of G and any prime p of E there is a
decomposition of virtual Q`-representations of G(Af )×WEp

H∗(ShG,Fξ) =
⊕
π∞

π∞ � σ(π∞), (69)

where π∞ ranges over admissible Q`-representations of G(Af ) such that there exists an
automorphic representation π of G(A) such that;

(1) π∞ ∼= (π)∞ (using our identification Q`
∼= C)

(2) π∞ ∈ Π∞(ξ).

Moreover, for each π∞ there exists a cofinite set S(π∞) of primes p such that for each
prime p over E lying over p and each τ ∈WEp the following equality holds:

tr(τ | σ(π∞)) = a(π∞)tr(τ | r−µ ◦ LLC(πp))p
1
2
v(τ)[Ev :Qp] dimXG , (70)

for some integer a(π∞).

One should interpret this as saying that if G is some group over Q which satisfies
the assumption that Gder is simply connected and Q-anisotropic, and has ‘no relevant
endoscopy’ then σ(π∞) is, up to a character twist, a(π∞) times a Galois representation
which for almost all primes p is LLC(πp) composed with a (specific) representation. This
integer a(π∞) should be thought about, roughly, as a signed version of m(π). In fact, if
ξ is ‘regular’ this is actually true.
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Remark 2.23. The author would like to clarify the actual contribution of himself and
A. Bertoloni Meli to Theorem 2.22. In particular the general idea of Theorem 2.22 is
contained in [Kot92a]. There a very specific case of Theorem 2.22 is proven. Once one
has singled out the notion of ‘no relevant endoscopy’ the rest of the proof of Theorem
2.22 is a technical exercise in the verification that the results in [Kot92a] work in this
more general context using the formula given in Theorem 2.7.

If we assume further that our G is a unitary group as in Example 1.60 then we can
say something even stronger:

Theorem 2.24 (Bertoloni Meli–Y.). Let E/Q be a CM field with F its totally real
subfield. Let U be an inner form of UE/F (n)∗ and set G := ResF/QU . Assume that

Gder is Q-anisotropic and has no relevant endoscopy. Let ShG be a Shimura variety
associated to G. Then, for any algebraic Q`-representation ξ and any prime p of E
there is a decomposition of virtual Q`[G(Af )× ΓE ]-modules

H∗(ShG,Fξ)(χ) =
⊕
π∞

π∞ � a(π∞) (r−µ ◦ GLC(π))) , (71)

where π∞ ranges over admissible Q`-representations of G(Af ) such that there exists an
automorphic representation π of G(A) such that;

(1) π∞ ∼= (π)∞ (using our identification Q`
∼= C)

(2) π∞ ∈ Π∞(ξ).

and χ is some global character and a(π∞) is an integer.

In fact, we are able to give an even more refined decomposition that is able to better
analyze that G(Qp)-structure in this case. Namely:

Theorem 2.25 (Bertoloni Meli-Y). Let G be as in the previous theorem. Let π be
be an automorphic representation of G such that π∞ is discrete series. Then, for any
prime p of E and any algebraic Q`-representation ξ we have a decomposition of virtual
Q`[G(Qp)×WEp ]-modules

H∗(ShG,Fξ)[(π∞)p] =
⊕

π′p∈Πψp (G(Qp),ωp)

π′p � σ((π∞)p ⊗ π′p). (72)

Remark 2.26. This theorem is plesantly surprising (at least to the author). Namely,
the G(Af ) structure on H∗(ShG,Fξ) doesn’t yield a decomposition into a G(Apf ) ×
G(Qp)-module in a canonical, explicit way. Thus, the ability to tease out that the at-
p-part of H∗(ShG,Fξ) contains precisely the information of the packet of σ(π∞) |WEp

is unexpected. Here is where the author and Bertoloni Meli neeeded pivotally the
incredibly deep work of [KMSW14] on the decomposition of the discrete spectrum for
unitary groups.

Thus, we see that, at least in the case of some unitary Shimura varieties, one can
explicitly describe the decomposition of the cohomology in terms of the Langlands cor-
respondence and, moreover, that this plays a pivotal role in studying the local Langlands
conjecture for unitary groups. Of course, this is only the very tip of the iceberg
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