
A SMATTERING OF REPRESENTATION THEORY

ALEX YOUCIS

1. Introduction and motivation

Let us fix a p-adic local field F . The key theorem of Scholze’s paper [1] is Theorem
1.1 which states that if π is an admissible Fp-representation and if we define the sheaf

Fπ on (Pn−1

F̆
)ét by the procedure

Fπ = (πGH
∗ π)GLn(F ) (1)

where πGH :MLT
∞ → Pn−1

F̆
is the Φ×GLn(F )×D×-equivariant (where D is the unique

central F -division algebra with invariant
1

n
and Φ is the Weil descent morphism) Gross-

Hopkins period map (constructed originally in [2]) then for all i and complete alge-

braically closed fields C containing F̆ the Fp[WF × D×]-module H i
ét(P

n−1
C ,Fπ) is ad-

missible as an Fp[D×]-module. Moreover, Scholze shows that, up to isomorphism, this
procedure is independent of the choice of C. He moreover shows that the WF -action on
these cohomology groups (necessarily uniquely) extends to a continuous action of the
Galois group GF .

Thus, from this, Scholze creates a sequence of functors

CiFp : {Admissible Fp[GLn(F )]-modules} →
{

Admissible Fp[GF ×D×]-modules
}

: π 7→ H i
ét(P

n−1
C ,Fπ)

(2)

(where we say a Fp[GF ×D×]-module is admissible if its underlying Fp[D×]-module is
admissible) enjoying some desirable properties(e.g. CiFp = 0 if i > 2(n− 1)). Moreover,

Scholze then extends this to show that if (A,m) is complete Noetherian ring with finite
residue field of characteristic p then there is a sequence of functors

CiA : {Admissible A[GLn(F )]-modules} →
{

Admissible A[GF ×D×]-modules
}

(3)

essentially by ‘passage to the limit’.

Remark 1.1. The definition of an admissible A[G(F )]-representation, for G a connected
reductive group over F , is slightly different than one might expect. For example, if A =
Zp then the underlying modules of such an object are torsion—they are, in fact, Qp/Zp-
modules. Cohomologically such objects appear by taking Qp/Zp-étale cohomology, which
is related to the usual cohomology groups with Zp and Qp by the usual sequence

0→ Zp → Qp → Qp/Zp → 0

and is related to completed cohomology (e.g. cf [3]).
1
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If we are now in a situation where we have a hypothetical local Langlands correspon-
dence for GLn(F ) (e.g. when n = 2 and F = Qp) we have a map

LLA : {Admissible A[GLn(F )]-modules} → {Rank n continuous A[GF ]-modules} (4)

and thus obtain a functor

JA : {Admissible A[GLn(F )]-modules} →
{

Admissible A[D×]-modules
}

: π 7→ Cn−1
A (π)[LL(π)]

(5)

One might hope that one can show that this functor is a good candiate for the ‘Jacquet-
Langlands correspondence withA-coefficients’ (something in the vein of a ‘p-adic Jacquet-
Langlands correspondence’). Such a hope has been given great evidence in the situation
where it makes sense (i.e. when n = 2 and F = Qp) thanks to work of Knight of Chojecki
(see [4]).

Given the above, it seems clear that having a good understanding of representation
theory of groups like GLn(F ) is pivotal. Such a study for characteristic 0 coefficients
is classical (at least if the field is also algebraically closed). But the above discussion
necessitates the discussion of such representations with coefficients in characteristic p
fields, in particular finite fields (so-called modular representations). This subject is
much more difficult and less-developed.

The goal of this note is to discuss this rperesentation theory and, in particular, com-
pare and constrast the situations in characteristic 0 and characteristic p.

2. Admissible representations and Hecke algebras

Let us begin by fixing F to be a local field of residue characteristic p, and letting E
be any field. We furthermore fix a connected reductive group G over F .

We first recall the basic definition of a smooth (and admissible) E-representation of
a locally compact and totally disocnnected Hausdorff group H (e.g. H = G(F ))

Definition 2.1. Let H be a locally compact totally disconnected Hausdorff topological
group and let V be an E-space (possibly of infinite dimension). We then call a represen-
tation π : H → GLE(V ) smooth if the action map V ×H → V is continuous when V is

given the discrete topology (equivalently V =
⋃
K

V K where K ranges over the compact

open subgroups of H).
A smooth representation π is furthermore called admissible if for all compact open

subgroups K of H we have that V K is finite-dimensional as an E-space. We denote the
category of smooth representations of G(F ) over E by Rep∞(H,E) (or just Rep∞(H)
when E is clear from context).

Remark 2.2. We will often times call a smooth (resp. admissible) representation π :
H → GLE(V ) a smooth (resp. admissible) E[H]-module. We will also often notationally
conflate V and π.

As in the case of representations of finite groups, one is tempted to try and understand
smooth representations of G(F ) in terms of some sort of ‘group algebra’ of G(F ) with
coefficients in E. In a more abstract setting, we’re really asking whether there is some
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‘natural ring R’ for which we can think of admissible E[G(F )]-modules in terms of left
R-modules.

There is, in fact, an abstract formalism to discuss such a problem which we now recall.
We begin with a definition:

Definition 2.3. Let A be an abelian category. We say that A is Grothendieck if it
satisfies the following conditions:

(1) The category A has arbitrary coproducts.
(2) Filtered colimits in A preserve exactness.
(3) The category A has a generator G (i.e. Hom(G,−) : A → Set is faithful or,

equivalently, every object of A admits an epimorphism from G⊕I for some set I)

The theorem of Gabriel-Popescu is then the following:

Theorem 2.4 (Gabriel-Popescu embedding theorem). Let A be a Grothendieck category
and let G be a generator for A. Set R := End(G)op. Then, the functor

Hom(G,−) : A → R−Mod

is, additive, fully faithful and left exact. Moreover, has a left adjoint denoted −⊗R G.

Proof. See [5] for a short proof. �

This theorem is implicitly imlplied in many situations well-known to the reader:

Example 2.5. Let H be a finite group. Then, we claim that C[H], the left regular rep-
resentation of H, is a generator for the category of finite-dimensional C-representations
of H. Indeed, note that since every irreducible C-representation of H is a subrepre-
sentation of C[H], and the category of C-representations is semisimple, evidently every
representation V is a quotient of a power of C[H]. Then, it’s clear that the category of
C-representations of H is an abelian category.

By the Gabriel-Popescu theorem we get a fully faithful embedding of this category of
representations into End(C[H])op−Mod taking V to Hom(C[H], V ) ∼= V . Note though
that End(C[H])op ∼= C[H] and we recover the usual statement that C-representations of
H fully faithful embed (in fact are equivalent to) finite length C[H]-modules.

Example 2.6. For finite connected p-group schemes over a perfect field kof character-
istic p one gets let Ĉ denote the ind-category of C. One can then show Ĉ has an ind-
generator (with the obvious meaning) given by L := lim−→ ker(Fn |Wn) (where Wn is the

finite length Witt scheme). Then, by a suitable (easy) generalization of the Gabriel-
Popescu theorem we get a fully-faithful embedding into discrete End(L)-modules. But,
End(L) can be identified with W (k)JF, V K—the completed Dieudonne ring over k. In
this way we recover Dieudonne theory for finite connected p-group schemes since discrete
W (k)JF, V K-modules are just finite length W (k)[F, V ]-modules.

The reason that this is relevant for us is the following basic observation:

Proposition 2.7. The category Rep∞(G(F )) is Grothendieck.

Before we begin the proof, it’s useful to construct a very useful class of representations
smooth E[G(F )]-modules from representations of compact open subgroups K. Namely:
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Definition 2.8. Let H be a closed open subgroup of G(F ) and let σ : H → GLE(V ) be

a smooth representation. Then, the smooth induction Ind
G(F )
H σ is the setf : G(F )→ V :

(1) f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G(F )

(2) There exists some compact open subgroup

Kf such that f(gk) = f(g) for all k ∈ Kf


We define the compact induction ind

G(F )
H σ to be the subset of Ind

G(F )
H σ consisting of

those f such that H\supp(f) is compact.

Right translation by G(F ) makes both Ind
G(F )
H σ and ind

G(F )
H σ smooth representations

of G(F ). Moreover, if G(F )/H is compact, then ind
G(F )
H σ = Ind

G(F )
H σ and this E[G(F )]-

module is admissible if σ is an admissible E[H]-module.

We then proceed with the proof of Proposition 2.7 as follows:

Proof. (Proposition 2.7) The proof of (1) and (2) in the definition of a Grothendieck
category are fairly simple. The only nebulous part is the existence of a generator of

Rep∞(G(F )). To see this, we claim that G :=
⊕
K

ind
G(F )
K 1 (where 1 is the trivial

representation of K) is a generator where K travels over the compact open subgroups
of G(F ). To see this we need to show that Hom(G,−) is faithful. But, since

Hom(G,V ) =
∏
K

V K

and V =
⋃
K

V K the conclusion is clear. �

While this theorem is nice, it does say that we can think of Rep∞(G(F )) as a subcat-
egory of a category of modules, over some ring. The ring involved however is a priori
quite messy: it’s

End

 ⊕
K⊆G(F )

ind
G(F )
K 1

op

There are two ways to get analogues of this theorem that are much more managable in
practice (in particular, which don’t require us to have to worry about all compact open
subgroups of G(F )).

The first edulcoration is of a purely formal nature. Namely, for a fixed compact open
subgroup K of G(F ) we define a subcategory of Rep∞(G(F )), denoted Rep∞(G(F ),K),
to be the subcategory consisting of smooth representations V of G(F ) such that V K

generates V as a representation. In particular, note that on such a subcategory the single
representation indGK(F )1 becomes a generator and running through the same ideas above
allows one to show (using the Gabriel-Popescu theorem) to embed Rep∞(G(F ),K) into
a category of modules.

To make this simpler to write, let us make the following definition:
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Definition 2.9. Let K be a compact open subgroup of G(F ). Then, we define the K-
Hecke algebra of G(F ) relative to K, denoted H(G(F ),K,E) (or just H(G(F ),K) when

E is clear from context) to be End(ind
G(F )
K 1).

What we then obtain is the following:

Proposition 2.10. Let K be a compact open subgroup of G(F ). Then, the functor

Rep∞(G(F ),K)→ H(G(F ),K)−Mod : V 7→ V K

is fully faithful, left exact, and has exact left adjoint given by

M 7→M ⊗H(G(F ),K) ind
G(F )
K 1

We will return later to the essential surjectivity of the above fully faithful functor, but
for now we would like to discuss the second educloration of the above ideas. For this we
make the following crucial assumption: E has characteristic 0.

The reason that E being characteristic 0 is helpful is the following result:

Proposition 2.11. There exists an E-valued Haar measure µ(−) =

∫
−

1 dg on G(F ).

Remark 2.12. This proposition needs some level of explanation. Namely, Haar measures
are, by definition, functions µ : B → [0,∞] where B is the Borel algebra of G(F ). How
then does it make sense to define a ‘Haar measure valued in E’? Given a Haar measure

µ one is then able to make sense of the integration

∫
G(F )

f dµ for a function f : (F )→ C.

Note though that if f is locally constant and compactly supported then such an integral
reduces to nothing but a sum of terms of the form f(x)µ(K) for compact open subgroups
K of G(F ). In particular, such an expression would make sense for a locally constant
function f : G(F ) → E assuming that one naturally can interpret µ(K) as an element
of E for any compact open subgroup K of G(F ).

Note though that if we normalize µ so that µ(K0) = 1 for some compact open subgroup
K0 of G(F ) then, in fact, µ(K) is in Q for any other compact open subgroup K. In fact,

µ(K) =
[K : K ∩K0]

[K0 : K ∩K0]

and since Q uniquely embeds into E we can, in fact, make sense of an expression∫
G(F )

f dµ for f : G(F ) → E locally constant compactly supported—and this is all

we will really need below, and is what we mean by “there exists an E-valued Haar
measure”.

If one works slightly harder, one can see that to make sense of the above one really
only needs that the characteristic ` of E differs from that of p. Indeed, the expressions
[K : K ∩K0]

[K0 : K ∩K0]
can be made sense of in E as long as as there is a neighborhood basis of

open subgroups of G(F ) for which the index of one in the other is prime-to-`. If ` 6= p
then one can do this precisely because G(F ) is locally pro-p. If ` = p one clearly sees
that we are doomed to create an ‘E-valued Haar measure’.
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Using this we can define Hecke algebra like objects which are much more concrete in
nature. Namely, let us make the following definition:

Definition 2.13. The analytic Hecke algebra of G(F ), denoted Han(G(F ), E) (or just
H(G(F )) when E is clear from context), is the algebra of all locally constant compactly
supported functions f : G(F )→ E with the convolution product:

(f1 ∗ f2)(x) :=

∫
G(F )

f1(g)f2(g−1x) dg

It’s not hard to show that Han(G(F )) is a non-unital E-algebra. We define a left
Han(G(F ))-module M to be smooth if Han(G(F ))M = M (i.e. every m ∈ M is of the
form fm′ for some f ∈ Han(G(F )) and some m′ ∈M). We assume that all Han(G(F ))-
modules we consider are smooth, and so we shall sloppily denote by Han(G(F ))−Mod
the category of smooth Han(G(F ))-modules.

We construct a functor F : Rep∞(G(F )) → Han(G(F ))−Mod by declaring that for a
smooth representation π : G(F )→ GLE(V ) we define the multiplication

f · v :=

∫
G(F )

f(g)π(g)v dg (6)

for f ∈ Han(G(F )) and v ∈ V . We denote π(f) this resulting endomorphism of V .
One can quickly check that if we set

eK :=
1

µ(K)
1K

for a compact open subgroup K of G(F ) then the operator π(eK) is the projection
V → V K which clearly then implies, since V is smooth, that this Han(G(F ))-module is
smooth as well.

The key result is then the following:

Proposition 2.14. The functor F is an additive equivalence of categories

Rep∞(G(F ))→ Han(G(F ))−Mod (7)

Proof. See [6, Proposition 1, Proposition 2 §4.2]. �

Note that Han(G(F )) is a much more concrete (non-unital) ring than the (unital) ring

End

(⊕
K

ind
G(F )
K 1

)
, and so is very useful to concretely study smooth E[G(F )]-modules.

One might wonder though, what the relationship between these two rings are. Of course
they can’t be isomorphic since one is non-unital, and the other is unital. That said,
Han(G(F )) is ‘made up of’ unital subrings which one can then directly question if they
are related to the above Gabriel-Popescu theory.

Namely, let us make the following definition:

Definition 2.15. Let K be a compact open subgroup of G(F ). We define the analytic K-
Hecke algebra, denoted Han(G(F ),K,E) (or just Han(G(F ),K) when E is clear from
context) to be the E-subalgebra of Han(G(F )) consisting of bi-K-invariant functions
G(F )→ E.
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Remark 2.16. It’s useful to note for later that Han(G(F ),K) evidently has an E-basis
consisting of the indicator functions 1KgK as g ranges over a section of G→ K\G/K.

Note that Han(G(F ),K) is a unital E-subalgebra of Han(G(F )) since eK acts as an
identity element. In fact, it’s not hard to see that the following equalities hold

Han(G(F ),K) = eKHan(G(F ))eK , Han(G(F )) = lim−→
K

Han(G(F ),K)

so that Han(G(F )) is a so-called ‘idempotented E-algebra’.
It is not at all hard to show that Proposition 2.14 implies the following:

Proposition 2.17. Let K be a compact open subgroup of G(F ). Then, the functor
V 7→ V K is an additive equivalence of categories

Rep∞(G(F ),K)→ Han(G(F ),K)−Mod (8)

Comparing this proposition to Proposition 2.10 leads one to question whether the E-
algebras H(G(F ),K) and Han(G(F ),K) are related. In particular, since they are both
unital E-algebras it now makes sense to ask whether they are isomorphic. The answer
is yes:

Proposition 2.18. There is a natural isomorphism H(G(F ),K) → Han(G(F ),K) for
which the diagram

Rep∞(G(F ),K) //

))

H(G(F ),K)−Mod

��

Han(G(F ),K)−Mod

(9)

is 1-commutative.

Proof. See the proposition on [7, Page 59]. �

3. Kazhdan’s isomorphism

In the introduction we mentioned a result of Kazhdan which allows one to compare
smooth representations between different groups, groups like G(F ) and G(F ′) where F
and F ′ are local fields with different characteristics but the same residue characteristic.
From the last section it’s clear that we can do this (in certain situations) by comparing
Hecke algebras for G(F ) and G(F ′) which is an actually sensible question since both such
objects are just E-algebras. Kazhdan acheives such a comparison in certain situations
under some strong hypotheses, perhaps the most pressing for us is the assumption that E
has characteristic 0. The reasons for this are multiple, but the most immediate being that
Kazhdan actually compares not ‘regular Hecke algebras’ but ‘analytic Hecke algebras’.

Let us now begin the setup necessary to state Kazhdan’s theorem. Namely, let us
now fix G to be a reductive group scheme over Z. Recall that this means nothing more
than G is a smooth affine group scheme over Z such that for every x ∈ Spec(Z) we have
that Gx → Spec(k(x)) is a connected reductive algebraic group (in the classical sense
of linear algebraic groups over a field). We assume that G contains a maximal torus
T (i.e. T is a smooth closed subgroup scheme of G which is étale (equiv. fppf) locally
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isomorphic to a power Gm,Z and for all x ∈ Spec(Z) we have that Tx → Spec(k(x)) is a
maximal torus in Gx).

This torus T is necessarily split (i.e. isomorphic to Gn
m,Z) since πét

1 (Spec(Z)) = 0 (cf.

[8, Corollary B.3.6]). In particular, G is a Chevalley group.

Remark 3.1. There exist non-split reductive groups over Spec(Z) which, by the above
discussion, means that they don’t admit a maximal torus (note that every group admits
a torus étale locally on the base—see [8, Corollary 3.2.7]). For example see the results
of [9].

In particular, we note the following useful fact:

Lemma 3.2. For any field K the natural map

Hom(Gm,Z, T )→ Hom(Gm,K , TK) (10)

is an isomorphism.

Proof. This is obvious. Indeed, the claim reduces to the claim that the map

Hom(Gm,Z,Gm,Z)→ Hom(Gm,K ,Gm,K)

is an isomorphism. But one explicitly computes that the first group is nothing more than
Z with n corresponding to the Hopf algebra map Z[x, x−1]→ Z[x, x−1] sending x 7→ xn.
The same holds true with Z replaced by K, and the conclusion readily follows. �

Using this we see that for any two fields K and K ′ we can naturally identify the
cocharacter lattices of TK and TK′ . Let us denote by X∗(T ) this common abelian group
We would also like to say that we can choose a notion of dominance of cocharacters that
is also independent of the field K.

To make sense of this, we first make the following observation:

Proposition 3.3. The group G contains a Borel subgroup B (i.e. a smooth closed
subgroup scheme such that Bx is a Borel in Gx for all x ∈ Spec(Z).

Proof. Let us note that GQ contains a Borel subgroup since it’s split. This is a classic
result, but since I don’t know a canonical reference let us quickly give an idea of a proof.

Let λ ∈ X∗(TQ) be such that for all roots α ∈ Φ(GQ, TQ) we have that 〈λ, α〉 6= 0.
This is always possible since, essentially, the set of λ such that 〈λ, α〉 = 0 for one α is a
Z-hyperplane in X∗(TQ), and a union of finitely many such Z-hyperplane cannot equal
all of X∗(T ). Such a λ is called regular. Let ZGQ(λ) be the scheme-theoretic centralizer
of λ. We claim that ZGQ(λ) = TQ.

Well, ZGQ(λ) is smooth and connected (see [8, Theorem 4.1.7]) and since we have
an obvious inclusion TQ ⊆ ZGQ(λ) it suffices to show that we have an equality of Lie
algebras Lie(TQ) = Lie(ZGQ(λ)). But, note that this latter Lie algebra can be described
in terms of the subalgebra of Lie(GQ) where λ acts trivially. Note though that for each

root space gα we have that λ acts on gα by t〈λ,α〉. By assumption this is non-trivial for
all α and thus the claim follows.

Note then that since ZGQ(λ) = TQ, and thus solvabe, we have that PGQ(λ) is solvable
since PGQ = ZGQ(λ) o UGQ(λ) (See loc. cit. for the definitions of these objects and this
decomposition). But, we know that PGQ(λ) is a connected parabolic subgroup of G.
Thus, PGQ(λ) being a solvable parabolic subgroup is necessarily a Borel.
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To see now that G contains a Borel let BorG/Spec(Z) be the scheme of Borel subgroups

(see [8, Theorem 5.2.11]). This is a smooth proper Z-scheme (see loc. cit.) and thus, in
particular, properness shows that BorG/Spec(Z)(Spec(Q)) = BorG/Spec(Z)(Spec(Z)). We

have just justified why BorG/Spec(Z)(Spec(Q)) is non-empty, from where the conclusion
follows. �

From this we see that under our identification of X∗(TK) ∼= X∗(TK′) for any two
fields K and K ′ we have that the BK-dominant cocharacters are carried bijectively to
the BK′-dominant cocharacters. Thus, using our terminology of X∗(T ) for the constant
abelian group underlying X∗(TK) for any field K we also get a subset X∗(T )+ ⊆ X∗(T )
of BK-dominant cocharacters that is constant across all field K.

Let us now assume that F is a local field of residue characteristic p. Let us set O to be
the integer ring of F and π to be a uniformizer of F . We make the following definition:

Definition 3.4. Let ` > 0 be an integer. The `th congruence subgroup of G(F ), denoted
K`(F ), is defined as follows:

K`(F ) := ker(G(O)→ G(O/π`))

Note that since GO → Spec(O) is smooth and Spec(O) → Spec(O/π`) is a pro-
infinitesimal thickening that the infinitesimal lifting criterion implies that the map
G(O) → G(O/π`) is surjective (this is just Hensel’s lemma in this context). In par-
ticular, we see that we can naturally identify G(O)/K`(F ) with G(O/π`).

Let us fix (for this section) E to be a field of characteristic 0. Our goal is to try and
compare the Hecke algebras Han(G(F ),K`(F )) and Han(G(F ′),K`(F

′)) (where in all
cases we normalize the Haar measure so that µ(G(O)) = 1) for a different local field F ′

of residue characteristic p, possibly of a different characteristic than F . To see why this
might be possible, let us first recall the well-known Cartan decomposition for G(F ):

Lemma 3.5 (Cartan decomposition). Let F and G be as above. Then, the following
equality of sets holds:

G(F ) =
⊔

λ∈X∗(T )+

G(O)λ(π)G(O)

Proof. A much more general version of this is shown in [10, §4]. �

Now, almost by definition, an E-basis for Han(G(F ),K`(F )) is in bijection with
K`(F )\G(F )/K`(F ) with

K`(F )gK`(F )←→ 1

µ(K`(F )gK`(F )
1K`(F )gK`(F ) =: eg,K`(F )

Let us note though that by the Cartan decomposition the sets G(O)λ(π)G(O) form a
K`(F )-stable partition of G(F ). Thus, we see that

G(F ) =
⊔

λ∈X∗(T )+

⊔
S∈Xλ,`(F )

S

where Xλ,`(F ) denotes the set of K`(F ) double cosets in G(O)λ(π)G(O).
Now, let us note that the set Xλ,`(F ) has an obvious transitive action of G(O)×G(O)

(by left-right multiplication) and, moreover, it’s clear that this action factors through
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G(O/π`)×G(O/π`) under which it becomes a G(O/π`)×G(O/π`)-torsor. This makes
it conceivable that the algebra might only depend on G(O/π`), something that could
certainly be compared between different local fields of residue characteristic p.

Namely, let us make the following definition:

Definition 3.6. Let F and F ′ be local fields of residue characteristic p. Let π and π′ be
uniformizers of F and F ′ respectively. For an integer m > 1 we say that F and F ′ are
m-close if there is an isomorphism of rings O/πm ∼= O′/π′m.

In particular, note that if F and F ′ are m-close and ϕ : O/πm → O′/π′m is an
isomorphism, we get an induced isomorphism ϕ : G(O/π`) → G(O′/π′`) and thus an
isomorphism

ϕ× ϕ : G(O/π`)×G(O/π`)→ G(O′/π′`)×G(O′/π′`) (11)

Let us denote by Γλ,`(F ) (for any F ) the stabilizer of K`(F )λ(π)K`(F ) in the previously

defined G(O/π`)×G(O/π`)-torsor Xλ,`(F ).
We then have the following elementary lemma:

Lemma 3.7. The isomorphism (11) carries Γλ,`(F ) to Γλ,`(F
′).

Before we prove this it’s useful to make some elementary observations. To begin,
note that for any m > 0 every element of O/πm can be written in the form πku where
0 6 k 6 m and u ∈ (O/πk)×. Moreover, it’s clear that this k is uniquely determined.
Thus, we have a ‘valuation function’

val : O/πm → {0, . . . ,m}
Note, moreover that if we have a ring isomorphism ϕ : O/πm → O/πm then π being a
generator of the maximal ideal of O/πm is sent to a generator of the maximal ideal (π′)
of O′/π′m. In particular, ϕ(π) = π′u for some u ∈ (O′/π′m)×. In particular, it’s not
hard then to see that the equality

val(ϕ(x)) = val(x)

holds for all x ∈ O/πm.

Proof. (Lemma 3.7) We begin by assuming that G = GLn and we have chosen T to
be the diagonal torus. Let λ : Gm,Z → G be any cocharacter. We then claim that the
isomorphism

ϕ× ϕ : GLn(O/π`)×GLn(O/π`)→ GLn(O′/π′`)×GLn(O′/π′`) (12)

carries Γλ,`(F ) to Γλ,`(F
′). The claim that (g1, g2) ∈ Γλ,`(F ) is equivalent to the claim

that there exists (k1, k2) ∈ K`(F )×K`(F ) such that g1λ(π)g2 = k1λ(π)k2. Writing

λ(π) =

π
m1

. . .

πmn


it’s easy to see that this condition can be phrased entirely in terms of the val of the
entries of g and g′. Since this is preservied under (12) the conclusion follows.

For general G we note that since Z is a Dedekind domain, it embeds into GLn (e.g.
see [11, 1.4.5]) and moreover (up to replacing our embedding by an inner conjugation of
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it—see [8, Theorem 3.2.6]) we can assume that our embedding sends our fixed T into
the diagonal torus for GLn. It’s easy then to reduce to the GLn case. �

From Lemma 3.7 we deduce that our chosen isomorphism ϕ induces a bijection

ϕ : Xλ,`(F )→ Xλ,`′(F )

which, in turn from the above discussion, induces an isomorphism of E-spaces

ϕ : Han(G(F ),K`(F ))→ Han(G(F ),K`(F )) (13)

Of course, there is no reason that this bijection of E-spaces (constructed via an explicit
bijection between bases on both sides) should be a ring map. That said, the following
result of Kazhdan says that this true up a small perturbation of field:

Theorem 3.8 (Kazhdan’s isomorphism, [12]). let ` > 0 be an integer. Then, there
exists some m > ` such that if F and F ′ are local fields with residue characteristic p and
ϕ : O/πm → O′/π′m is an isomorphism then the induced E-space isomorphism (13) is
a ring map.

Example 3.9. Let G = T a torus of dimension n and let ` = 0 so that K0(F ) = (O×F )n.
Then, the standard Satake isomorphism provides us with an E-algebra isomorphism

S : Han(T (F ),K0(F ))→ E[X∗(T )]

which carries 1K0(F )λ(π)K0(F ) 7→ [λ]. In particular, we see that if F and F ′ are any two
local fields of the same residue characteristic p (i.e. they are 0-close) then our constructed
isomorphism (13) takes 1K0(F )λ(π)K0(F ) to 1K0(F ′)λ(π′)K0(F ′). The fact that we have an
obvious commutative diagram

Han(T (F ),K0(F ))
S //

ϕ

��

E[X∗(T )]

Han(T (F ′),K0(F ′))

S
66

shows that the multiplicativity of ϕ reduces down to the multiplicativity of S which is
well-known.

For G an aribtrary connected reductive group it’s unclear whether the diagram

Han(G(F ),K0(F ))
S //

ϕ

��

E[X∗(T )]W

Han(G(F ′),K0(F ′))

S
55

commutes (note that the Weyl group is split over Z so, in the same vein as X∗(T )+ this
group makes sense independent of field K). It seems very likely to be the case though
and might be able to be deduced from Maconald’s formulas (cf. [13, Theorem 1.5.1]).

Moreover, there is the following conjecture of Kazhdan:

Conjecture 3.10. The m in Theorem 3.8 can be taken to be `.
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A pedantic remark should be made concerning Theorem 3.8. Namely, note that our
discussion of the preservation of val shows that if ϕ : O/πm → O′/π′m is an isomorphism,
then ϕ((πk)) = (π′k) for any 0 6 k 6 m and so, in particular, ϕ induces an isomorphism
ϕ : O/πk → O′/π′k for all such k. Thus, while the isomorphism in the statement of
Theorem 3.8 is with respect to m, the isomorphism in (13) is technically with respect to
the induced isomorphism ϕ : O/π` → O′/π′`.

The key point in needing to have F and F ′ be m close for an m possibly larger than `
is that while the linear isomorphism (13) only requires F and F ′ to be `-close, the proof
of multiplicativity will require us to assume the further result that F and F ′ are m-close
for a possibly larger m (to be made semi-explicit soon).

Before we continue on to the proof of Kazhdan’s isomorphism, it’s worth discussing
the implication of most importance to us:

Corollary 3.11. Let ` > 0 be a fixed integer and E a field of characteristic 0. Let
G be a reductive group over Z. Then, there exists an m > ` such that if F and F ′

are local fields of the same residual characteristic p then the choice of an isomorphism
ϕ : O/πm → O′/π′m and a splitting (B, T ) of G induces an additive equivalence of
categories

Rep∞(G(F ),K`(F ), E)→ Rep∞(G(F ′),K`(F
′), E) (14)

Proof. This follows immediately from Theorem 3.8 together with Proposition 2.17. �

Let us note that under some sort of local Langlands type philosophy, such an equiva-
lence should have some sort of Galois analogue. In fact, considering the following natu-
ral examples of m-close fields might give the reader a good guess at what this analogue
should be:

Example 3.12. Let m > 0 be an integer. Let q be a power of p and let Qq denote
the unramified extension of Qp of degree logp(q). Then, the fields F ′ = Fq((t)) and

Fm = Qq(p
1
pm ) are m-close. Indeed, it’s clear that O′/π′m = Fq[T ]/(Tm). Note then

that Om = Zq[T ]/(T p
m − p). The uniformizer of Om is T and thus we see that

Om/πm = Zq[T ]/(T p
m − p, Tm) = Zq[T ]/(p, Tm) = Fq[T ]/(Tm)

From this one immediately thinks of the Fontaine-Winterberger theorem (see [14])
and Scholze’s generealizations in the form of tilting perfectoid spaces (see [15]). Then,
in some sense, we see that Kazhdan’s theorem is some automorphic version of ‘finite level
tilting’. While this may seem far out, finite level version of the Fontaine-Winterberger
theorem actually predate the theorem itself! Namely, the Galois theoretic analogue of
the Kazhdan isomorphism is the following theorem of Deligne (which actually implies
the Fontaine-Winterberger isomorphism):

Theorem 3.13. Let F and F ′ be local fields of the same finite residue characteristic. If
F and F ′ are m-close then there is an isomorphism of groups

GF /I
(m)
F

≈−→ GF ′/I
(m)
F (15)

where I
(m)
F and I

(m′)
F denote the m-th term in the ramification filtration.

Proof. This is [16, Theorem 2.8] �
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Let us now proceed with the proof of Theorem 3.8. The first key lemma is the
following:

Lemma 3.14. Let C ⊆ X∗(T )+ be finite. Define

GC :=
⊔
λ∈C

G(O)λ(π)G(O)

Then, the following holds:

(1) There exists an integer m = mC > ` depending only on C such that for all
g ∈ GC we have that gKn(F )g−1 ⊆ K`(F ).

(2) Let f1, f2 ∈ Han(G(F ),K`(F )) be such that supp(fi) ⊆ GC . Then, if F and F ′

are n-close then
ϕ(f1 ∗ f2) = ϕ(f1) ∗ ϕ(f2)

Proof. (Sketch) To show one one first can show the claim for any cocharacter λ valued
in the diagonal torus when G = GLn using the same ideas as in the proof of Lemma
3.7 (specifically thinking in terms of val) and the m we take only depends on the size of
the coefficients of λ′s expression in terms of e∨i . The reduction to GLn is then clear as
discussed in the proof of Lemma 3.7.

Let us now show why 2. holds. Note that since the isomorphism ϕ at level m for
any m > ` (if F and F ′ are m-close) induces the isomorphism at level ` it’s not hard to
see that we can assume without loss of generality that ` = m. Note that it suffices to
consider fi = egiλi(π)g′i,K`(F ) where λi ∈ C and gi, g

′
i ∈ G(O/π`). Note then that we are

trying to show that

ϕ(eg1λ1(π)g′1,K`(F ) ∗ eg2λ2(π)g′2,K`(F )) = ϕ(eg1λ1(π)g′1,K`(F )) ∗ ϕ(eg2λ2(π)g′2,K`(F ))

= eϕ(g1)λ1(π′)ϕ(g′1),K`(F ′) ∗ eϕ(g2)λ2(π′)ϕ(g′2),K`(F ′)
(16)

Note that

(eg1λ1(π)g′1,K`(F )∗eg2λ2(π)2′2,K`(F ))(x) = cµ(K`(F )g1λ1(π)g′1K`(F )∩x−1K`(F )g′−1
2 λ2(π)−1g−1

2 K`(F ))

(17)
where c = [G(O) : K`(F )]−2 is some measure term that explicit depends only on index
[G(O) : K`(F )]. Note that since hi := giλi(π)g′i are in GC so that hiK`(F ) = K`(F )hi
we have that

K`giλi(π)g′iK`(F ) = giλi(π)g′iK`(F )

it’s not hard to see that

eg1λ1(π)g′1,K`(F ) ∗ eg2λ2(π)2′2,K`(F ) = eg1λ1(π)g′1g
′−1
2 λ2(π)−1g−1

2 ,K`(F )

It’s then easy to show how this decomposes into terms that ϕ maps explicitly, and see
that it agrees with the same construction on the other side. To keep track of the measure
terms working out precisely, note that

µ(K`(F )) = [G(O) : K`(F )]

= |G(O/π`)|

= |G(O′/π′`)|
= [G(O′) : K`(F

′)]

= µ(K`(F
′))

(18)
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�

This gives a clear avenue to try and prove Theorem 3.8. Namely, the above allows
us to for any finite subset of Han(G(F ),K`(F )) choose an n large enough so that ϕ
commutes with multiplication on that finite subset of Han(G(F ),K`(F )). If we knew
that as a noncommutative E-algebra Han(G(F ),K`(F )) is finitely presented (i.e. admits
a surjection from the non-commutative polynomial ring E〈t1, . . . , tr〉 with finitely gen-
erated kernel) then to show that (13) is a ring map, we’d only have to show that for the
Pi(t1, . . . , tr) generating the kernel and the generators h1, . . . , hr ∈ Han(G(F ),K`(F ))
that

Pi(ϕ(h1), . . . , ϕ(hr)) = 0

Since ϕ is additive, if we knew that

ϕ(hd11 ∗ · · · ∗ h
dr
r ) = ϕ(h1)d1 ∗ · · · ∗ ϕ(hr)

dr

then we could conclue that for all di ∈ N with 0 6 d1 + · · ·+ dr 6 max(deg(Pi)) then

Pi(ϕ(h1), . . . , ϕ(hr)) = ϕ(P (h1, . . . , hr)) = 0

But, this entails showing that ϕ is a ring map with respect to a finite list of elements
which, as above, we are capable of doing.

Before we formalize this, into a proof we need to address the key assumption above—is
Han(G(F ),K`(F )) a finitely presented E-algebra? The answer, thanks to deep work of
Bernstein is yes:

Lemma 3.15 (Bernstein). For any compact open subgroup K of G(F ) the commutative
E-algebra Zan(G(F ),K) := Z(Han(G(F ),K)) is finite type. Moreover, the Zan(G(F ),K)-
modules Han(G(F ),K) is finitely generated.

Proof. We give references that are more easily obtainedthan the original Bernstein refer-
ence, as well as being in English. Namely, see Proposition 1.10.2.1 and Theorem 1.10.3.1
of Roche’s article in [17]. Translating the terminology a bit, we note that Han(G(F ),K)
is obtained by letting e = eK in the terminology of loc. cit. To see that ZSe is a finitely
generated C-algebra in the terminology of loc. cit. consider equation (1.10.2.2), the fact
that Se is finite, and Theorem 1.9.1.1. �

Before briefly explain the context of this result, we mention the following:

Corollary 3.16. The E-algebra Han(G(F ),K) is finitely presented.

Proof. Note that since Zan(G(F ),K) is a finitely generated commutative E-algebra
we have by Noetheranity a surjective E-algebra map E[u1, . . . , uv] → Zan(G(F ),K)
with a finitely generated kernel I = (P1, . . . , Pr). Note then that we get a surjection
E〈u1, . . . , uv〉 → Zan(G(F ),K) with ideal generated by the Pi (for any ordering of the
monomials) and the relations uiuj − ujui. In particular, we see that Zan(G(F ),K) is a
finitely presented E-algebra. As Han(G(F ),K) is finite over it it’s a finitely presented
Zan(G(F ),K)-algebra. Then, the fact that finite presentation is preserved by composi-
tion shows that Han(G(F ),K) is a finitely presented E-algebra as claimed. �

The proof of Lemma 3.15 is in the context of the Bernstein center and Bernstein
decomposition of the category Rep∞(G(F ), E). To fully explain this would lie outside
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the scope of this note (Roche’s article in [17] is a very nice introduction) but let us suffice
to say roughly the contents of these results.

Recall first the following well-known definition:

Definition 3.17. Let L be a rational Levi subgroup of G and let P be its associated par-
abolic. For any smooth representation σ of L(F ) we denote by IndGLσ the representation
IndGP (F )(F )σ̃ where σ̃ is the inflation to P (F ) via the decomposition P = Ru(P ) oL. A

smooth representation π of G(F ) is called supercuspidal if it is not a subquotient of any
representation of the form IndGLσ for a proper Levi subgroup L ( G.

The first key to understanding the context of Lemma 3.15 is the following classic
result:

Theorem 3.18. Let π be an irreducible smooth (and thus necessarily admissible by
Harish-Chandra’s theorem—see [18, Theorem 12]) E[G(F )]-module. Then, there exists
a Levi subgroup L of G and a supercupsidal representation σ of L(F ) such that π is a
subquotient of IndGLσ. Moreover, the pair (L, σ) (called the supercuspidal support of π)
is unique up to G(F )-conjugacy.

Proof. See [17, Proposition 1.7.2.1, Roche]. �

This then motivates the consideration of pairs (L, σ) as being fundamental to the study
of Rep∞(G(F )). In fact, if one uses a slightly coarser equivalence than just conjugacy,
namely (L, σ) ∼ (L′, σ′) if L and L′ are conjugate by some g ∈ G(F ) and σ = σ′χ for a
homomorphism χ : M(F )/M◦ → C× (see [17, §1.4.1, Roche] for the definition of M◦)
one obtains a decomposition of the category Rep∞(G(F )) itself. Namely, let us denote
by B(G) the set {(L, σ)}/ ∼.

Then, the remarkable theorem of Bernstein is the following:

Theorem 3.19 (Bernstein). Let V be an object of Rep∞(G(F )). Then, V admits a
unique decomposition

V =
⊕

s∈B(G)

V s (19)

where every irreducible subquotient of V s has supercupsidal support in s.

Applying this theorem to the regular representation of G(F ) on Han(G(F )) gives us
subalgebras Han(G(F ))s with centers we denote Zs. Bernstein shows that these algebras
Zs are isomorphic to the identity functor on the subcategory of objects V in Rep∞(G(F ))
with V = V s. He then uses this description to concretely describe these algebras Zs as
the global sections of the structure sheaf on an algebraic variety over E. The claim that
Z(Han(G(F ),K)) is finitely generated then follows by showing it is isomorphic to a finite
product of Zs’s. Moreover, the finite generation of Han(G(F ),K) over its center is also
done in the light of these representation theoretic notions.

With all of this setup, we can now finally prove Theorem 3.8:

Proof. (Theorem 3.8) It is not hard to see that if S ⊆ X∗(T )+ is a finite set generating
X∗(T )+ as a monoid, and if we set

XS(F ) :=
⋃
λ∈S

Xλ,L(F )
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then the set ex for x in the finite set XS(F ) is a set of E-algebra generators for
Han(G(F ),K`(F )). Let P1, . . . , Pr denote the generators of the kernel of the E-algebra
map

E〈tx〉 → Han(G(F ),K`(F )) : tx 7→ ex

(there are only finitely many by Corollary 3.16). Let d := max degPi. Note that the
union of the set of all combinations of products of the double cosets in S is compact,
and so will be contained in GC s in Lemma 3.14 for some finite subset C ⊆ X∗(T )+.
Take m = mC . Then, Lemma 3.14 together with the discussion immediately following
it imply that the ϕ in (13) will be a ring map if F and F ′ are m-close. �

Remark 3.20. Note that, a priori, to make sense of all of the above we really only needed
to assume that G was a split reductive group over Z(p). One might think that this adds
a level of generality but, in fact, it does not. Indeed, thanks to the Chevalley-Demazure
theorem (cf. Theorem [8, Theorem 1.2 and Proposition 1.3]).

Let us note that we have now have, thanks to Corollary 3.11, satisfactorily made sense
of how to compare admissible representations of G(F ) and G(F ′) in certain situations
even when F and F ′ have different characteristic. Of course, as stated in the intro-
duction, to try and compare a function field analogue of Scholze’s construction to the
p-adic setting what we really want is something like the Kazhdan isomorphism for Hecke
algebras valued in characteristic p fields. This is, from what I gather, completely open
territory.

I list here some questions and comments that might be helpful towards thinking in
such a direction:

(1) Can one phrase the Kazhdan isomorphism purely in terms of ofH(G(F ),K`(F ))?
Namely, from Proposition 2.18 we know thatHan(G(F ),K`(F )) andH(G(F ),K`(F ))
are isomorphic. Can we rephrase the induced isomorphism

H(G(F ),K`(F ))→ H(G(F ′),K`(F
′))

in a way that makes sense regardless of what E is?
(2) As observed in Example 3.9 there is a connection bewteen the Kazhdan isomor-

phism and the Satake isomorphism. Classically the Satake isomorphism is only
stated with coefficients in a characteristic zero. That said, recent work of Herzig
and Henniart-Vigneras (see [19] and [20]) gives a characteristic p analogue of the
Satake isomorphism. Can this be analyzed to study a Kazhdan like isomorphism
in characteristic p, at least in the hyperspecial setting?

(3) Is it even true that H(G(F ),K`(F ), E) is a finitely generated E-algebra if E is of
characteristic p? This seems to be true in some basic cases (e.g. at hyperspecial
level), but I’m not sure of any general result. The work of Ollivier seems to be
important here (at least at pro-p Iwahori level—see the next section).

4. The pro-p Iwahori Hecke algebra

While representations valued in characteristic p fields is definitely a more complicated
setting than the characteristic 0 coefficient setting (e.g. because it lacks an analytic
model for the Hecke algebra) it does have one distinct advantage. Moreover, after



A SMATTERING OF REPRESENTATION THEORY 17

explaining this advantage we will also be able to give an actual concrete way in which
the modular theory is ‘worse’ than the characteristic 0 setting.

Remark 4.1. When we speak of modular representations we mean smooth representations
valued in characteristic p fields.

To explain this strange distinction between characteristic p and characteristic 0, we
begin by recalling the following basic fact from algebra:

Lemma 4.2. Let G be a finite p-group and let X be a finite set. Then,

#X = #XG mod p

Proof. This is immediate since we know that

X =
⊔

x∈G\X

Gx

so that
#X =

∑
x∈G\X

#Gx =
∑

x∈G\X

[G : Stab(x)]

If x /∈ XG then p | [G : Stab(x)] and the conclusion follows. �

From this we deduce the following:

Corollary 4.3. Let G be a finite p-group and let ρ : G → GLFp(V ) be a finite-

dimensional Fp-representation. Then, V G 6= 0.

Proof. It’s clear that ρ is defined over some finite subfield Fq. The claim then immedi-
ately follows from the previous lemma by noting that V G = 0 implies that #V G = 1. �

We will now bootstrap this to say something fascinating about smooth Fp-representations
of G(F ) for a local field F of residue characteristic p and G/F a reductive group. Let
us also assume that the the coefficient field E is Fp for the remainder of this section.

Proposition 4.4. Let π : G(F ) → GL(V ) be a smooth Fp-representation. Then, for
any pro-p compact open subgroup K we have that V K 6= 0.

Proof. Let us restrict ρ to K. Note then that for any vector v ∈ V we have that Stab(v)
is an open subgroup of K. In particular, we know that K/Stab(v) is finite, and thus the
Fp[K]-module generated by v is finite-dimensional—let’s call it V . Note then that since
ρ : K → GLFp(V ) is continuous that it factors through a finite p-group quotient. The

claim then follows from Corollary 4.3. �

Let us note that for any G the group G(F ) contains compact open pro-p subgroups.
Indeed, one need merely fix an embedding G ↪→ GLn and take G(F ) ∩ K1(F ) where
K1(F ) is the first congruence subgroup of GLn(O).

That said, there is a generally ‘optimal’ type of pro-p subgroups known as pro-p
Iwahori subgroups:

Definition 4.5. Let B(G,F ) denote the building for G over F (see [21] for a definition
of the building of G). A sugroup I of G(F ) fo the form Stab(A) for an alcove A in
B(G,F ) is called an Iwahori subgroup of G(F ). There is a unique pro-p Sylow subgroup
I(1) of I. Such subgroups of G(F ) are called pro-p Iwahori subgroups of G(F ).
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All Iwahori subgroups of G(F ) are conjugate (see [21, §3.7]) since G(F ) acts transi-
tively on the alcoves in B(G,F ). In particular, there is really no ambiguity in saying
‘the’ Iwahori and ‘the’ pro-p Iwahori subgroup of G(F ).

If the reader is not ver familiar with buidlings, they can content themselves with the
following example, which will be the one of most interest to us in this section:

Example 4.6. Take G = GLn. Then, the Iwahori subgroup of GLn(F ) is

I = {g ∈ GLn(O) : (g mod π) ∈ B(O/π)}

where B is the standard Borel subgroup of upper triangular matrices in G. The pro-p
Iwahori subgroup of GLn(F ) is

I(1) = {g ∈ GLn(O) : (g mod π) ∈ U(O/π)}

where U = Ru(B) is the group of unipotent upper triangular matrices in GLn.

Remark 4.7. If the reader is curious about the above off-hand remark that pro-p Iwa-
hori subgroups ‘optimal’ pro-p subgroups of G(F ), see [22, Proposition 3.3.3] to see
justification, at least in the simply connected semisimple case.

Now, since the pro-p Iwahori subgroup of G(F ) always has fixed points for any smooth

representation, we might hope that the functor V 7→ V (1) := V I(1) to H(G(F ), I(1)-
modules is not too lossy (e.g. it’s not at all lossy if V is irreducible). In particular, one
might wonder whether or not whether the functor

Rep∞(G(F ))→ H(G(F ), I(1))−Mod : V 7→ V (1)

is an equivalence of categories. Of course, this cannot literally be true since if V (1)

does not generate V then V and the subrepresentation generated by V (1) will map to
isomorphic objects, even though they are not isomorphic representations necessarily.

But, one might still wonder whether the fact that ind
G(F )

I(1)
1 is ‘almost a generator’ (since

everything at least has non-zero I(1)-invariants) allows us to say something meaningful
about this functor.

Perhaps a good place to start, which remedies the above concern, is with the functor

Rep∞(G(F ), I(1))→ H(G(F ), I(1))−Mod : V 7→ V (I)

which, by Proposition 2.10, is fully faithful. Is this functor an equivalence? We observed
in Proposition 2.17 that this is always the case with characteristic 0 coefficients, and if
there was a compact open subgroup K ⊆ G(F ) where one might hope Proposition 2.17
holds true, the pro-p Iwahori subgroup is certainly a good candidate.

But, this is our first major difference between the characteristic 0 and modular theory:

Theorem 4.8 (Breuil, Ollivier). The functor

Rep∞(G(F ), I(1))→ H(G(F ), I(1))−Mod : V 7→ V (I)

is an equivalence if F = Qp and is not essentially surjective if charF = p or if O/π 6= Fp.

Proof. See [23] for a full discussion. �
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The examples constructed in [23] are quite complicated, and it would be fascinating
to see a talk devoted entirely to this topic.

In an entirely different vein work of Schneider in [24] amazingly shows how to fix not

only the issue brought to light by Theorem 4.8 but also the fact that ind
G(F )

I(1)
1 is not a

generator of Rep∞(G(F )). Namely, he shows that if one derives both sides accordingly
that one actually recovers an actual equivalence.

Namely, let us denote byD(G) the derived category of the abelian category Rep∞(G(F )).

Moreover, let us fix an injective resolution ind
G(F )

I(1)
1 → I• in Rep∞(G(F )) and set

H(G(F ), I(1))• to be the DGA obtained as End•(I•) (see [24] for details).
Then, the theorem of Schneider states the following:

Theorem 4.9 (Schneider). There is an equivalence of triangulated categories

D(G)→ D(H(G(F ), I(1))•)

such that the composition with

D(H(G(F ), I(1))•)→ D(Fp−Mod)

is the derived functor of the I(1)-invariants functor.

Remark 4.10. Note that since I(1) is pro-p that the invariants functor is not right exact,
which explains the need/desire to derive it in the latter part of the above theorem.

It is worth noting that if we wnat to apply these ideas to the setting of Scholze’s paper
and its generalizations one will also need an analogue of Kazhdan’s theorem that works
even when G is not split since, after all, we need to apply it to D×. That said, at least
in the D× setting Badalescu has written down an appropriate analogue of the Kazhdan
isomorphism (with characteristic 0 coefficients). See [25, Theorem 2.13].

Let us end this section with some questions and comments:

(1) A priori applying a (conjectural) characteristic p version of Kazhdan’s theorem is
a little touchy since we no longer have an equivalence of smooth representations
with Hecke modules. That said, we still know from Proposition 2.10 that for
smooth representations π and ρ generated by their I(1)-invariants that π ∼= π′ if
and only if their associated H(G(F ), I(1))-modules are isomorphic. This could in
theory relate the Lubin-Tate constructions in different characteristics (assuming

a Kazhdan type theorem for I(1)) assuming that all objects involved are generated
by their pro-p Iwahori invariants.

(2) Schneider’s proof of Theorem 4.9 is purely formal—in particular, the fact that

ind
G(F )

I(1)
1 somehow becomes a generator in the derived setting is entirely nebulous

to me. Can we understand this result more concretely?
(3) Does D(G) have the type of representation theoretic notions that we’d need to do

much of smooth representation theory (e.g. a notion of supercuspidal support,
etc.)?

(4) Given the importance of I(1) representation theoretically it’s natural to wonder

if the I(1)-level of the Lubin-Tate tower hold specific signifance.
(5) Can we understand Badalescu’s proof better? How does he get around the issue

that there is no consistent definition of X∗(T ), etc.?
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5. Classification of modular representations

The previous section may leave the reader feeling like modular representations of p-
adic groups are impenetrable. This is not entirely wrong, but hard work of many people
have provided some of the bare bones tools for their study (including an essentially
complete theory for GL2).

In particular, we would like to state the results of the recent work of Abe, Henniart,
Herzig, and Vigneras.

For this section let F be a local field of residue characteristic p and E an arbitrary
field of characteristic p.

To state it we first need to recalled the generalized Stein representation associated to
a pair Q ⊆ P of parabolic subgroups of G:

Definition 5.1. Let P and Q be rational parabolic subgroups of G with Q ⊆ P . The
generalized Stein representation associated to the pair (Q,P ) is defined as follows:

StPQ :=
ind

P (F )
Q(F )1∑

Q(Q′⊆P
ind

P (F )
Q′(F )1

We have the following difficult theorem concerning generalized Steinberg representa-
tions:

Theorem 5.2 (Grosse-Klone, Ly). For any pair Q ⊆ P of rational parabolics in G the
generalized Stein representation StPQ is irredudcible and admissible.

Proof. This is the contents (specifically Theorem 3.1) of [26]. �

As is standard in the classical theory of smooth representations over C, parabolic
induction plays a huge role in the study of the smooth representations of G(F ). But, in
a slight deviation from the classical theory, in the modular world one extends represen-
tations from a parabolic to a largest parabolic containing it before inducing.

Less cryptically:

Theorem 5.3. Let L be a rational Levi subgroup of G and let P be its associated par-
abolic. Given a smooth representation σ of L(F ) let σ̃ denote the inflation to P (F ).
Then, there exists a largest parabolic P (σ) containing P for which σ̃ extends to P (σ)(F ).
This extension is unique, and denoted σe. The representation σe is smooth, admissible,
and/or irreducible if σ is.

Proof. This is [27, Corollary 1, II.7]. �

Let us consider triples of the form (P, σ,Q) where P and Q are rational parabolics,
σ is a smooth representation of L(F ) (where L is the Levi subgroup of P ), and P ⊆
Q ⊆ P (σ). Define two triples (P, σ,Q) and (P ′, σ′, Q′) to be equivalent if they are
G(F )-conjugate. We say that a triple (P, σ,Q) is supercuspidal if σ is an irreducible
supercuspidal representation of L(F ).

For a triple (P, σ,Q) we define the smooth representation I(P, σ,Q) of G(F ) as follows:

I(P, σ,Q) := Ind
G(F )
P (σ)(F )(σ

e ⊗ St
P (σ)
Q ) (20)
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and call it the associated representation.
The landmark result of Abe, Henniart, Herzig, and Vigneras is the following:

Theorem 5.4. For a supercuspidal triple (P, σ,Q) we have that I(P, σ,Q) is irreducible
and admissible. Moreover, I(P, σ,Q) and I(P ′, σ′, Q′) are isomorphic if and only if
(P, σ,Q) are equivalent. Finally, every irreducible admissible representation of G(F ) is
isomorphic to a I(P, σ,Q).

Proof. In the algebraically closed setting this precisely Theorems 1, 2, and 3 of [27]. In
the non-algebraically closed setting this is a result of Henniart-Vigneras and is contained
in [28]. �

This theorem is truly incredible. In particular, due to the more rigid nature of the
modular setting and the notion of extended representations we see that we have a literal
expression for every irreducible admissible representation of G(F ). Indeed, contrast this
to the classical complex theory where every irreducible admissible representation of G(F )
has a supercuspidal support (P, σ) but IndGPσ is rarely irreducible and all we know is
that π is an irreducible subquotient of IndGPσ.

While this theorem does give a beautiful classification of modular representations of
G(F ) that reduces their classification to supercuspidals, it doesn’t give one an explicit
classification (i.e. classify the supercuspidal pairs (P, σ,Q)).

So, to end the contenful part of this section we would like to record a much more
concrete version of the above theorem for GL2 due to Barthel-Livne, together with a
classification of the supercuspidal triples thanks to Breuil in the GL2(Qp) setting (albeit
phrased in different language).

Theorem 5.5 (Barthel-Livne). Let F be a local field of residue characteristic p. Then,
every irreducible admissible Fp-representation of GL2(F ) is contained in the following
list:

(1) A representation of the form IndGL2
B (χ1 ⊗ χ2) where B is the standard Borel in

GL2 of upper triangular matrices and χi are continuous characters χ : F× →
Fp
×

. Here χ1 ⊗ χ2 denotes the character of the split diagonal torus T sending
diag(a, b) ∈ T (F ) to χ1(a)χ2(a).

(2) Characters of GL2(F ) of the form χ ◦ det where χ : F× → Fp
×

is a continuous
character.

(3) The representations StGL2
B ⊗ (det ◦χ) where det ◦χ are as in 2.

(4) Irreducible admissible supercuspidal representations of GL2(F ).

Moreover, the characters χ, χ1, and χ2 listed above are uniquely determined.

Proof. This is the content of [29]. �

Thus, we see that the mystery of the irreducible admissible Fp-representations of
GL2(F ) lies in the determination of the supercuspidal such objects. When F = Qp

Breuil has given a spectacular classification of these.
To do this, it’s useful to first make the following definition:

Definition 5.6. A weight is an irreducible representation ρ : GL2(Fp) → GLFp(V )

where V is finite-dimensional over Fp.
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The reason that weights are relvant to us is by the following elementary result:

Lemma 5.7. If ρ : GL2(Fp) → GLFp(V ) is a weight then the inflation ρ : GL2(Zp) →
GLFp(V ) is an irreducible admissible representation of GL2(Zp). This association creates

a bijection

{Weights} / ≈−→
{

Irreducible admissible Fp[GL2(Zp)]-modules
]
}/ ≈

Proof. This is easy, for a proof see [30, Corollary 12] �

Now, if you take a weight V and interpret it as a representation of GL2(Zp), then

one can take the compact induction ind(V ) := ind
GL2(Qp)
GL2(Zp)V . This will not, in general,

be irreducible or admissible. For example, if V is the trivial weight 1 then Frobenius
reciprocity implies that

Hom(ind(1), π) = πGL2(Zp)

so that every irreducible unramified representation of GL2(Qp) is a quotient of ind(1).
That said, Breuil figured out precisely quotients of ind(V ) are irreducible and admis-

sible. To state it we need the following version of a mod p Satake isomorphism:

Lemma 5.8. For any weight V there is a canonical and explicit isomorphism

End(ind(V )) ∼= Fp[T1, T
±1
2 ]

Proof. See [30, Theorem 21]. �

The remarkable theorem of Breuil is then as follows:

Theorem 5.9 (Breuil). The irreducible admissible supercupsidal Fp[GL2(Qp)]-modules

are precisely those of the form ind(V )⊗End(ind(v)) χ
′ where χ′ : End(ind(V ))→ Fp is an

Fp-algebra homomorphism such that χ′(T1) = 0.

Proof. This was originally shown in [31] and [32]. See [30, §10] for a nice explanation of
an alternative proof. �

Thus, all that remains to do is classify the weights V . This is a classical problem of
modulare representation theory which has a surprisingly simple solution:

Theorem 5.10. Every weight V is isomorphic to (Syma−b Fp
2
)⊗detb for a unique pair

of integers (a, b) with 0 6 a− b 6 p− 1 and 0 6 b < p− 1.

Proof. See [33, Proposition 2.17]. �

This completely shuts the door on the classification of irreducible admissible Fp[GL2(Qp)]-
modules.

We end this section with some questions and comments:

(1) Given Theorem 5.4 one has a very well-defined notion of supercuspidal support.
Consider this is the first step necessary to perform Bernstein decomposition, it’s
natural to wonder whether an analogue of Theorem 3.15 holds and, if so, whether
it’s useful to understanding the finite presentedness of H(G(F ), I(1)).

(2) What specifically goes wrong with Breuil’s proof if you replace Qp by another
field F (either p-adic or equicharacteristic)?
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[10] François Bruhat and Jacques Tits. Groupes réductifs sur un corps local: I. données radicielles

valuées. Publications Mathématiques de l’IHÉS, 41:5–251, 1972.
[11] François Bruhat and Jacques Tits. Groupes réductifs sur un corps local: Ii. schémas en groupes.
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