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Introduction

This paper is the first part of a series of paper whose goal is to explore to
what extent the results of [Sch13b] can be extended to groups other than
ResF/QpGLn,F .

More explicitly, in [Sch13b] Scholze is able to to show that the local
Langlands conjecture for GLn(F ), where F is a finite extension of Qp, can be
characterized by explicitly constructed ‘test functions’. Less cryptically, he
shows that for every cutoff function h ∈ C∞c (GLn(OF ),Q) and every element
τ ∈WF , there is an explicitly defined function fτ,h ∈H (GLn(F )) with the
property that for any irreducible smooth representation πp of GLn(F ) that

tr(fτ,h | πp) = tr(h | πp) tr(τ | LL(πp)), (1)

where LL is the local Langlands correspondence for GLn(F ) as in [HT01].
Moreover, Scholze shows that (1) uniquely characterizes the correspondence
LL.

The function fτ,h was constructed by Scholze in the earlier work [Sch13a]
and can be defined in terms of the cohomology of certain tubular neighbor-
hoods inside of Rapoport-Zink spaces associated to GLn(F ). Note that, in
particular, fτ,h implicitly depends on the choice of a dominant cocharac-
ter of GLn,F which, in the above, is the cocharacter corresponding to the
standard representation.

Scholze’s function theoretic characterization of the local Langlands con-
jecture for GLn(F ) has many applications, examples of which we now list.
Philosophically it suggests that the deep and somewhat abstract Langlands
correspondence can be understood, in some sense, in terms of explicit func-
tions which one might be able to algorithmically or combinatorially describe.
A function theoretic characterization of the Langlands correspondence al-
lows for a more concrete study of the endoscopic case of the Langlands func-
toriality principle, by studying the transfer of these characterizing functions
between endoscopic groups. Finally, the function theoretic characterization
of the local Langlands conjecture lends itself to be used to study the Lang-
lands correspondence in more fluid situations (for example to study the local
Langlands correspondence in families as in [JNS17]).

Given the above, especially in any attempt to study functoriality using
these ‘test functions’, one desires to generalize this result of Scholze to an
arbitrary reductive group G over Qp. In [SS13] Scholze and S.W. Shin study
the cohomology groups H∗(Sh,Fξ) where Sh is the Shimura variety attached
to certain compact unitary similitude groups G (those with no endoscopy as
in §I.5). In particular, they describe the decomposition of the G(Af )×WEp

H∗(Sh,Fξ), where E is the reflex field for Sh and p is a prime of E lying
over a split place p of Q (see loc. cit. for the definition of split, which is
slightly less restrictive than the usual notion of split), in terms of the local

4



Langlands conjecture of G(Qp) which is (a product of terms of the form)
GLn(F ).

They also formulate generalizations of the formula (1) to groups G over
Qp other than ResF/QpGLn,F . In particular, they state the following:

Conjecture 1 (Scholze-Shin). Let G be an unramified group over Qp with
Zp-model G and let µ be a dominant cocharacter of GQp with reflex field E.

Let τ ∈WQp and let h ∈ C∞c (G(Zp),Q). Let (H, s, η) be an endoscopic group
for G and let hH be the transfer of h. Then, for every tempered L-parameter
ϕ with associated semi-simple parameter λ we have

SΘϕ(fHτ,h) = tr
(
s−1τ | (r−µ ◦ η ◦ λ |WE

| · |−〈ρ,µ〉E

)
SΘϕ(h). (2)

We refer the reader to [SS13, §7] for a detailed explanation of the notation
but we note that SΘϕ is the stable distribution of ϕ which associates to a
function f ∈H (H(Qp)) the quantity

SΘϕ(f) :=
∑

πp∈Π(ϕ)

rπ tr(f | πp), (3)

where Π(πp) is the L-packet of ϕ and rπ is a natural number associated to
π (see [SS13, §6]).

Remark. As remarked before, the function fτ,h depends on the choice of µ,
but we suppress this dependency throughout this article since it will always
be clear from context.

Note that to make sense of Conjecture 1 one must have the analogue
of the functions fτ,h for G as well as the knowledge of the local Langlands
conjecture for H. In this conjecture we are concerned with the case where
H = G. In this case, the existence of the functions fτ,h follows from the
results of [You19] and the local Langlands conjecture for H follows from the
results of [Mok15].

The desire for the presence of endoscopic groups in Conjecture 1 is related
to the fact that to characterize the local Langlands conjecture for groups G
different from ResF/QpGLn,F , for which non-trivial L-packets appear, one
expects the need to relate any association with endoscopic transfer, which
the necessitates a formula like Equation (2) for an arbitrary endoscopic
group H.

The result of the methods in this paper is the following (stated as The-
orem III.4.1) in the body of the paper):

Theorem 1. The Scholze-Shin conjecture holds with the following assump-
tions:

1. G = ResF/QpU where U is an inner form of UE/F (n)∗ and E/Qp is
unramified.
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2. The parameter ψ is tempered.

3. The L-packet of ψ contains a square integrable representation.

4. (H, s, η) is the trivial endoscopic triple, and µ is miniscule

Remark. We hope that the assumption that µ is miniscule is not crucial,
and that it will be removed in a future draft of this article. The ability to
remove this assumption, if possible, is due to the fact that the miniscule
cocharacters of GLn(C) generate the space of weights. Note that this is a
special feature of GLn(C) and, in particular, may be impossible to remove
(with the techniques of this paper) for analogous results of Theorem 1 for
other groups G.

Remark. In fact, we prove the above result for all local A-parameters ψ
containing a representation πp appearing as a local constituent of a repre-
sentation π appearing in the cohomology of the unitary Shimura varieties
we consider and such that π∞ is discrete series.

We now describe the contents of our paper, pointing out interesting
results which are incidental to the proof of Theorem 1.

Part I In Part I of the paper we explore the notion of relevant endoscopy.
Informally speaking, the relevant endoscopy of a global group G is the set of
endoscopic triples showing up in the stabilization of the trace formula for G.
More rigorously, we define an endosopic triple (H, s, η) to be relevant if it
can be completed to an endoscopic quadruple (H, s, η, γH) (as in Definition
I.2.4). We show that this notion of relevance is intimately related to an a
priori different notion of relevance for (H, s, η) which means that it can be
upgraded to a quadruple (H, s, Lη, ψH) where ψH is an A-parameter for H
and Lη ◦ ψH is relevant for G.

Remark. Here our notion of A-parameter is somewhat loose. In Part I
we develop a method to analyze the above when the A-parameters of an
algebraic group G over a local or global field F is taken to mean certain
homomorphisms ψ : Lψ → LG where Lψ is some extension of WF by a
pro-reductive connected algebraic group. In particular, we shall apply this
in the cases when F is local (in which case these are the usual notion of
A-parameters) and when G is a global unitary group in which case they are
the A-parameters in [KMSW14, §1.3.4].

This then allows one to get a good understanding of the explicit relation-
ship between a unitary group G having no relevant endoscopy and certain
global parameters ψ of G (as in [KMSW14]) having trivial reduced global
centralizer group Sψ. Namely, we show the following (labeled as Proposition
I.6.2 in the main body of the paper):
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Theorem 2. Let G = ResF/QU be a global unitary group and let ψ be a
relevant A-parameter of G such that ψ∞ is elliptic for some infinite place
∞ of F . Then, if G has no relevant endoscopy then Sψ = 1.

As a corollary of this, using the deep work of [KMSW14], we obtain,
using the notation of Theorem 2, the following (labeled as Lemma I.6.3 in
the main body of the paper):

Corollary 1. Let π be an automorphic representation for G which is dis-
crete at infinity. Then, if G has no relevant endoscopy the following equality
holds

L2
disc(G(Q)\G(A))[πp] =

⊕
π′p∈Πψp (G(Qp),ωp)

π′p (4)

where ψ is the A-parameter associated to π.

For a precise description of notation see the discussion surrounding Lemma
I.6.3. In words, this lemma says that under suitable conditions on G and π
the away-from-p isotypic component of L2(G(Q)\G(A)) associated to π con-
sists of precisely representations with local p-component lying in the packet
of ψp and, moreover, that these appear with multiplicity one.

Part II In Part II of this paper we show a decomposition of the coho-
mology of a compact Shimura variety with no endoscopy. More precisely,
we have the the following (labeled as Theorem II.2 in the main body of the
paper):

Theorem 3. Let G be a reductive group over Q which has no relevant en-
doscopy and for which Gad is Q-anisotropic. Suppose that Sh is a Shimura
variety associated G with reflex field Eµ. Then, for any algebraic Q`-
representation ξ of G and any prime p of Eµ there is a decomposition of
virtual Q`-representations of G(Af )×WEµp

H∗(Sh,Fξ) =
⊕
πf

πf � σ(πf ), (5)

where πf ranges over admissible Q`-representations of G(Af ) such that there
exists an automorphic representation π of G(A) such that;

1. πf ∼= (π)f (using our identification Q`
∼= C)

2. π∞ ∈ Π∞(ξ).

Moreover, for each πf there exists a cofinite set S(πf ) ⊆ Sur(πf ) of primes
p such that for each prime p over Eµ lying over p and each τ ∈ WEµp

the
following equality holds:

tr(τ | σ(πf )) = a(πf ) tr(τ | r−µ ◦ ϕπp)p
1
2
v(τ)[Eµp:Qp] dim Sh, (6)

for some integer a(πf ) (see Definition II.3.5).
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Besides the singling out of the notion of relevance of endoscopy this
theorem has minimal original content, essentially being a technical exercise
in showing that the results of [Kot92a] are applicable to the general situation
with the results of [KSZ] as a replacement for the results of [Kot92b]. We
have included the work here mostly for the convenience of the reader, and
to help fix ideas and notation that occur in Part III of the paper.

Part III In Part III we combine the results of the last two parts, together
with the work of [Shi11] and [You19], to deduce Theorem 1.

To begin, we show that one can make explicit improvements to Theorem
3 in the case that G = ResF/QU for a unitary group U. Namely, we show
the following (see the contents of §III.2):

Theorem 4. Let E/Q be a CM field with F its totally real subfield. Let U
be an inner form of UE/F (n)∗ and set G := ResF/QU. Assume that Gad is
Q-anisotropic and has no relevant endoscopy. Let Sh be a Shimura variety
associated to G. Then, for any algebraic Q`-representation ξ and any prime
p of E there is a decomposition of virtual Q`[G(Af )×WEµp

]-modules

H∗(Sh,Fξ)(χ) =
⊕
πf

πf � a(πf ) (r−µ ◦ LL(πp)) , (7)

where πf ranges over admissible Q`-representations of G(Af ) such that there
exists an automorphic representation π of G(A) such that;

1. πf ∼= (π)f (using our identification Q`
∼= C)

2. π∞ ∈ Π∞(ξ).

and χ is some global character and a(πf ) is an integer (see Definition II.3.5).

We also obtain, using Theorem 4 and Corollary 1, the further refinement:

Corollary 2. Let π be be an automorphic representation of G such that
π∞ is discrete series. Then, for any prime p of E and any algebraic Q`-
representation ξ we have a decomposition of virtual Q`[G(Qp) × WEµp

]-
modules

H∗(Sh,Fξ)[πpf ] =
⊕

π′p∈Πψp (G(Qp),ωp)

π′p � σ(πpf ⊗ π
′
p). (8)

We then use the trace formula in [You19] together with Theorem 4 and
Corollary 2 to deduce Theorem 1. To do this though, one must first lift local
representations at p to global representations of some unitary group, and
some care must be chosen in the conditions necssary to do this. We appeal
to the results of [Shi12] which is where the square-integrability conditions
enter into the equation.
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Remark. The authors would like to point out that while much of the paper
is written with the specific focus on unramified unitary groups, the rough
strategy to prove the Scholze-Shin conjecture seems applicable to a much
wider class of groups. The main impediments to generalizing is the lack of
results like [KMSW14] and [Shi11] to apply to non-unitary groups.

Future directions

The authors intend to work on extending Theorem 1 to the case of an
arbitrary endoscopic triple (H, s, η). While the authors are hopeful, this
will be a serious undertaking. The main obstruction being the lack of a
simple analogues of Theorem 3 and Corollary 1 in the situation of groups
G which have non-trivial endoscopy.

Beyond that, the authors are interested in studying to what extent the
Scholze-Shin conjecture characterizes the local Langlands correspondence
and, in particular, in the situation of unramified unitary groups. The re-
sult for GLn(F ) in [Sch13b] uses results which don’t obviously generalize to
groups other than GLn(F ).
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Notations and conventions

General

• Unless stated otherwise p is a prime and ` is a prime different from p.

• We will (sometimes implicitly) fix an isomorphism ι : Q`
≈−→ C.

• Unless stated otherwise all fields are assumed of characteristic 0.

• For a number field F and a finite place v of F we shall denote by Fv
the completion of F at v, Ov its integer ring, and kv its residue field.
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• For a number field F we denote by AF the topological ring of F -adeles
and by AF,f the topological subring of finite F -adeles. We shall shorten
AQ to A and AQ,f to Af .

Galois theory

• For a field F and an algebraic extension F ′/F we shall use Gal(F ′/F )
to denote the Galois group of F ′ over F . We shall shorten Gal(F/F )
to ΓF .

• For a local or global field F we shall denote by WF the Weil group of F
(as in [Tat79, §1]) with its implicit continuous map with dense image
WF → ΓF . For every finite Galois extension F ′ of F we shall use this
map to canonically, and implicitly, define an isomorphism WF /WF ′

∼=
ΓF /ΓF ′ and shall thus use Gal(F ′/F ) to denote the common group.

• For a non-archimedean local field F with residue field k we shall shall
denote by IF ⊆WF ⊆ ΓF the inertia subgroup of F .

• For a finite field F we shall denote by FrobF , or just Frob if F is clear
from context, the geometric Frobenius element in ΓF .

• For a non-archimedean local field F with residue field k we shall denote
by FrobF a lift of Frobk along the canonical surjection WF → Γk.

• For a local field F we shall denote by vF , or just v when F is clear from
context, the valuation map v : WF → Z where we have normalized so
that v(FrobF ) = 1.

Reductive groups

• All reductive groups are assumed connected.

• In contexts revolving arbitrary fields F we shall denote algebraic groups
over F with non-boldfaced letters like G. In the context where F is a
global field we will often denote a group over F in the boldface font
(e.g. G). For a place v of F we shall denote shorten GQv to Gv.
If there is some distinguished place v0 of F of interest to us we shall
often use the non-boldfaced notation G to denote Gv0 .

• For an algebraic group G over a field F we denote by G◦ the connected
component of G and by π0(G) the component group G/G◦.

• For an algebraic group G over a field F we denote by Z(G) the center
of G and by ZG(γ) the centralizer of an element γ ∈ G(F ).

• For an algebraic group G over a field F and an element γ ∈ G(F ) we
denote by Iγ the group ZG(γ)◦.
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• For an algebraic group G we denote G/Z(G) by Gad and the derived
subgroup by Gder.

• For a reductive group G over a field F we denote by AG the maximal
F -split torus in Z(G).

• For a reductive group G over a field F we shall denote by X∗(G)
the ΓF -set of homomorphisms Gm,F → GF and by X∗(G) the ΓF -
module of homomorphisms GF → Gm,F . Note that if G is a torus
then X∗(GF ) is also a ΓF -module. We denote by X∗F (G) the group
of homomorphisms Gm,F → G and identify it implicitly with the sub-
group X∗(G)ΓF of X∗(G).

• For a reductive group G over a field F we denote by {G} the set of
conjugacy classes in G(F ), by {G}s the set of stable conjugacy classses
in G(F ), and by {G}s.s. and {G}s.s.s the analogues with G(F ) replaced
by the set G(F )s.s. of semisimple elements of G(F ). For an element
γ ∈ G(F ) we denote by {γ} (resp. {γ}s) its image in {G} (resp.
{G}s).

• For a reductive group G over a field F and two elements γ and γ′

in G(F ) we use the notation γ ∼ γ′ to indicate that γ and γ′ are
conjugate, and the notation γ ∼st γ′ to denote that γ and γ′ are
stably conjugate.

• For a reductive group G over a field F and a semi-simple element γ ∈
G(F ) we denote by S(γ) the collection of conjugacy classes contained
in the stable conjugacy class {γ}s.

• For a reductive group G over a local field F and a semi-simple element
γ ∈ G(F ) we denote by a(γ) the cardinality of the kernel of the natural
map

H1(F, Iγ)→ H1(F,ZG(γ)) (9)

which is finite by the assumption that F is local. Note that if Gder is
simply connected then a(γ) = 1 and so this term will often times not
factor in to our work (despite its presence in many references).

• For a reductive group G over a field F we denote by G(F )ell the set of
elliptic elements of G(F ) (see §IV.1.1 for a discussion of ellipticity).

• If G is an algebraic group over a characteristic 0 local field we will
topologize G(F ) in the standard way (e.g. as in [Con12b]). We shall
then denote the connected component of G(F ) with this topology by
G(F )0.

• If F is a global field and G a reductive group over F we shall topologize
G(AF ) and G(AF,f ) in the standard ways (again see [Con12b]) .
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• For a number field F and a reductive group G over F we denote by
S(G) the set of finite places v of F for which Gv is unramified (i.e.
which admits a reductive model over Spec(Ov) in the sense of [Con14,
Definition 3.1.1]).

• For a number field F and a reductive group G over F we will often
implicitly choose a reductive model Gv of Gv over Spec(Ov) for all
v ∈ S(G).

• We shall denote by K0,v the hyperspecial subgroup Gv(Ov) ⊆ G(Fv)
for all v ∈ S(G). For finite v /∈ S(G) or infinite v we shall define K0,v

to be G(Fv).

• We will implicitly make the identification of topological groups

G(AF ) ∼=
∏′

v

(G(Fv),K0,v) (10)

and the identification

G(AF,f ) ∼=
∏′

v finite

(G(Fv),K0,v) (11)

obtained by (passing to the colimit) in [Con12b, Theorem 3.6].

• For a reductive group over a number field F we denote by G(AF )1 the
subgroup of G(AF ) defined as follows

G(A)1 := {g ∈ G(A) : |ν(g)| = 1 for all ν ∈ X∗(G)ΓF } (12)

where A×F is given the usual norm.

• For a reductive group G over the number field F we note that evi-
dently (by the product rule) that G(F ) ⊆ G(AF )1 we define the adelic
quotient of G, denoted [G], to be the topological space G(A)1/G(Q)
which is a measure space whenever G(A) is given a measure.

• For F a global field and G a reductive group over F we denote by
τ(G) the Tamagawa number of G defined to be vol([G]) when G(A)
is endowed with the Tamagawa measure (as in [Wei12, Chapter II]).
See [PS92, Theorem 5.6] for a proof that such a volume is finite.

• For G a reductive group over Q and K a compact open subgroup of
G(Af ) we denote by Z(Q)K the group Z(G)(Q) ∩K and by ZK the
group Z(G)(Af ) ∩K.

• Let F be a local field and G a reductive group over F . We denote by
e(G) the Kottwitz sign as in [Kot83].
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Harmonic analysis

• Let F be a number field and G a reductive group over F . Let C be
an algebraically closed field and let πf be an irreducible admissible
C-representation of G(AF,f ). Then, we shall denote by

πf =
⊗′

v

πf,v (13)

the Flath decomposition with respect to the set {K0,v} as in [Fla79].
We then denote by Sur(πf ) the set of v ∈ S(G) such that πf,v is K0,v

unramified (i.e. for which π
K0,v

f,v 6= 0) and call a place v in Sur(πf )
unramified. Again, we will make it clear when things fundamentally
change with different choices of K0,v.

• If v ∈ Sur(πf ) let us denote by ϕπf,v the associated unramified local

Langlands parameter WFv → LGv as in [Bor79, Chapter II].

• Let F be a non-archimedean local field and let G be a reductive group
over F . For a characteristic 0 field C We denote by HC(G(F )), or just
H (G(F )) when C is clear the Hecke algebra as in [C+79, §1.3] where
we have implicitly (often times clear from context) fixed a Q-valued
Haar measure dg on G(F ). For a compact open subgroup K of G(F )
we shall denote by HC(G(F ),K), or just H (G(F ),K) when C is clear
from context, as in loc. cit.

• Let F be a local field and G a reductive group over F . Let us suppose
that φ ∈ HC(G(F )) and that γ ∈ G(F ) is semi-simple. Then, we
define the orbital integral of φ, denoted Oγ(φ), to be the quantity

Oγ(φ) :=

∫
Iγ(F )\G(F )

φ(gγg−1) dg (14)

We define the stable orbital integral of φ, denoted SOγ(φ), to be the
quantity

SOγ(φ) =
∑
γ′∼stγ

e(Iγ′)a(γ′)Oγ(φ) (15)

• Let F be a global field and let G be a reductive group over F . Let φ
be an element of HC(G(AF )) and γ ∈ G(AF ) semi-simple (i.e. that
each of its local factors is semi-simple). We then define the orbital
integral of φ, denoted Oγ(φ), to be the quantity

Oγ(φ) =

∫
Iγ(AF )\G(AF )

φ(gγg−1) dg (16)
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Assume now that γ ∈ G(F ). We define the stable orbital integral of
φ, denoted SOγ(φ), to be the quantity∑

i

e(Iγi)Oγi(φ) (17)

Here i ranges over the set

ker(F, I(AF ))→ H1(F,G(AF )) (18)

The element γi ∈ G(AF ) is the one associated to i by applying [Kot86b,
§4.1] place by place. Note, in particular, that for all places v of F the
vth-component of γi is stably conjugate to γ.

• Suppose that G is a reductive group over Q and ξC is an algebraic
representation of GC. Let Π∞(ξC) be the set of isomorphism classes
of all irreducible G(R)-representations having the same central and
infinitesimal character as the contragredient representation and let
Π0
∞(ξC) be the subset of discrete series representations in Π∞(ξC).

If ξ is an algebraic Q`-representation of G we use our identification of
Q` and C to obtain a corresponding C-representation ξC and we set
Π∞(ξ) := Π∞(ξC) and Π0

∞(ξ) := Π0
∞(ξC)

• Let G be a reductive group over Q. Let π be a C-representation (or
Q`-representation using our identification of Q` and C). We set m(π)
to be the multiplicity of π in L2

disc(G(Q)\G(A)).

Algebraic geometry

• For a variety X over a field k and a lisse Q`-sheaf F on X with
char(k) 6= ` we then denote by H∗(X,F) the virtual Q`-space

2 dim(X)∑
i=0

(−1)iH i(Xk,Fk). (19)

Shimura varieties

• We shall denote Shimura data as (G, X) as in [Mil04, Definition 5.5].

• We shall assume that all of our Shimura data are of abelian type.

• We shall assume only that our Shimura data satisfy axioms SV1, SV2,
and SV3 as in [Mil04], but will often assume that our Shimura data
also satisfies axiom of SV5.

• If (G, X) is a Shimura datum, we shall denote its associated reflex
field (as in [Mil04, Definition 12.2]) by E(G, X) or, when (G, X) is
clear from context, just E.
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• For every neat (as on [Mil04, Page 34]) compact open subgroup K of
G(Af ) we denote by ShK(G, X), or ShK when (G, X) is clear from
context, the canonical model (in the sense of [Mil04, Definition 12.8])
of the complex variety ShK(G,X)C (as in [Mil04, Definition 5.14]) over
its reflex field E.

• We denote by Sh the E-scheme lim←−
K

ShK as K runs over the neat com-

pact open subgroups of G(Af ). Note that this exists by [Sta18, Tag
01YX] since the transition maps for the system {ShK} have finite (and
thus affine) transition maps.

• Let ` be a prime and let ξ be an algebraic Q`-representation of G (i.e.
an algebraic representation ξ : GQ` → GLQ`(V ) for some Q`-space V )
such that for the induced map

G(Af )
proj.−−−→ G(Q`) ↪→ G(Q`)→ GLQ`(V )

has the property that Z(Q)K ⊆ ker ξ for all sufficiently small compact
open subgroups K ⊆ G(Af ).
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Part I

Relevant global endoscopy
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I.1 Introduction

In this part, we discuss the notion of relevant global endoscopy. Loosely, for
a group G defined over a number field F , we say that an elliptic endoscopic
datum (H, s, η) is relevant if it appears in the stable trace formula for the
group G. We then prove some applications of our discussion which will be
necessary for our main results.

I.2 Definitions and statements

We assume for convenience in this entire part that Gder is simply connected.
We begin by recalling the definition of endoscopic datum as in [Shi10, §2.1].

Definition I.2.1. An endoscopic datum for a reductive group G over a
field F consists of a triple (H, s, η) where H is a quasisplit reductive group,
η : Ĥ → Ĝ is an embedding and s ∈ Ĥ such that

• We have an equality η(Ĥ) = Z
Ĝ

(s)0,

• The Ĝ-conjugacy class of η is fixed by ΓF ,

• The image of s in Z(Ĥ)/Z(Ĝ) lies in (Z(Ĥ)/Z(Ĝ))ΓF ,

• The image of s ∈ H1(F,Z(Ĝ)) is trivial if F is local and locally trivial
if F is global.

An endoscopic datum is defined to be elliptic if (Z(Ĥ)Γ)◦ ⊂ Z(Ĝ).

We record now our definition of isomorphism between endoscopic data:

Definition I.2.2. An isomorphism between endoscopic data (H1, s1, η1) and
(H2, s2, η2) is an isomorphism α : H2 → H1 such that there exists g ∈ Ĝ
such that α̂(s1) = s2 mod Z(Ĝ) and the following diagram commutes:

Ĥ1 Ĝ

Ĥ2 Ĝ.

η1

α̂ Int(g)

η2

(20)

We denote the set of isomorphism classes of endoscopic data for G by
E(G) and we denote the set of isomorphism classes of elliptic endoscopic
data by Eell(G).

Note that the map α̂ is ΓF -invariant and only well-defined up to a choice

of splittings (see [Kot84b, §1.8]) and hence up to Ĥ1
ΓF

-conjugacy but that
the above diagram makes sense for any choice of α̂ in this class. Note also
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that we will often confuse Ĥ for η(Ĥ) and so, in particular, will often confuse
s and η(s).

Now, since we assume Gder is simply connected, for each endoscopic
datum (H, s, η), there exists a lift of η to an L-map Lη : LH → LG (see
[Lan79, Prop 1]). The following lemma will be useful to us.

Lemma I.2.3. Suppose that (H1, s1, η1) and (H2, s2, η2) are endoscopic data
and fix lifts Lη1 and Lη2 of η1 and η2 respectively. Suppose further that
α : H2 → H1 gives an isomorphism of endoscopic data and g ∈ Ĝ is as in
I.2.2. Then for each choice of α̂, there exists a lift Lα of α such that the
following diagram commutes:

LH1
LG

LH2
LG.

Lη1

Lα Int(g)

Lη2

(21)

Moreover, the Ĥ1-conjugacy class of Lα does not depend on the choice of α̂
or g.

Proof. We want to define Lα to equal Lη−1
2 ◦ Int(g) ◦ Lη1. For this to make

sense, we need to show that the image of Int(g) ◦ Lη1 is contained in the
image of Lη2.

Now there exists for each w ∈WF and i ∈ {1, 2}, elements g(w)i ∈ Ĝ so

that Lηi(1, w) = (g(w)i, w). We observe that for any hi ∈ Ĥi, we have

(g(w)i(w · ηi)(hi), w) = Lηi(1, w) Lηi(w
−1(hi), 1) (22)

= Lηi(hi, w) (23)

= Lηi(hi, 1) Lηi(1, w) (24)

= (ηi(hi)g(w)i, w), (25)

so that
Int(g(w)−1

i )(ηi(hi)) = (w · ηi)(hi). (26)

Now, it suffices to check that for each (1, w) ∈ LH1 there exists an
(h2, w) ∈ LH2 such that

(gg(w)1w(g−1), w) = (η2(h2)g(w)2, w). (27)

Hence we need to check that gg(w)1w(g−1)g(w)−1
2 ∈ η2(Ĥ2). It suffices to

show that this element lies in Z
Ĝ

(η2(Ĥ2)) since for any maximal torus T of

Ĥ2, we have η2(T ) is a maximal torus of Ĝ and so

Z
Ĝ

(η2(Ĥ2)) ⊂ Z
Ĝ

(η2(T )) = η2(T ) ⊂ η2(Ĥ2). (28)
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Now pick h2 ∈ Ĥ2. We observe that using equation (26), we have

Int(gg(w)1w(g−1)g(w)−1
2 )(η2(h2)) = Int(gg(w)1w(g−1))((w · η2)(h2)) (29)

= Int(gg(w)1)(w(g−1η2(w−1(h2))g))
(30)

= Int(gg(w)1)(w(η1(α̂−1(w−1(h2)))))
(31)

= Int(gg(w)1)((w · η1)(α̂−1(h2))) (32)

= Int(g)(η1(α̂−1(h2))) (33)

= η2(h2), (34)

as desired.
Now we show the second statement of the lemma. As above, we have

that the map α̂ is unique up to Ĥ1
ΓF

-conjugacy. For a fixed choice of α̂ if we
have pick two different g, g′ ∈ Ĝ such that the requisite diagram commutes,
then Int(g−1g′) fixes η1(Ĥ1) pointwise and so g−1g′ ∈ η1(Z(Ĥ1)). Hence

any two Lα will differ at most up to conjugacy by an element of Ĥ1.

We are now ready to define the notion of relevant endoscopy. We begin
with some definitions following [Shi10, §2.3].

The first definition is that of the set of so-called endoscopic quadruples
for the group G:

Definition I.2.4. For F a local or global field define EQF (G) to be the
set of equivalence classes of tuples (H, s, η, γH) such that (H, s, η) is an en-
doscopic triple and γH ∈ H(F ) transfers to G(F ) and is (G,H)-regular
and semisimple. The tuples (H, s, η, γH) and (H ′, s′, η′, γ′H) are equivalent
if there exists an isomorphism α : H ′ → H inducing an isomorphism of
endoscopic data and such that α(γ′H) is stably conjugate to γH . We define
the subset EQell

F (G) ⊂ EQF (G) to consist of those equivalence classes such
that (H, s, η) is elliptic.

We now define a set of pairs associated to G consisting, essentially, of a
semi-simple element γ of G(F ) and an element of its Kottwitz group K(Iγ/F )
(see IV.1.5 for a recollection of the Kottwitz group). More precisely:

Definition I.2.5. For F a local or global field define SSF (G) to be the set of
equivalence classes of pairs (γ, κ) such that γ ∈ G(F ) is semisimple and κ ∈
K(Iγ/F ). Two pairs (γ, κ) and (γ′, κ′) are equivalent if γ and γ′ are stably
conjugate in G and κ and κ′ are equal under the canonical isomorphism
K(Iγ/F ) ∼= K(Iγ′/F ). We define the subset SSell

F (G) ⊂ SSF (G) to be the
equivalence classes of pairs where γ is elliptic.

Now we have the following key bijection due to Kottwitz:
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Proposition I.2.6. The natural map

EQF (G)→ SSF (G), (35)

given by
(H, s, η, γH) 7→ (γ, η(s)), (36)

(where γ is some transfer of γH to G(F )) is well-defined and a bijection.
Moreover this map restricts to give a bijection

EQell
F (G)→ SSell

F (G). (37)

Proof. See [Shi10, Lemma 2.8] as well as [Kot86b, Lemma 9.7].

We are now ready to define the notion of relevant endoscopy.

Definition I.2.7. Let F be a number field and G a reductive group over F .
We have a natural projection map

EQF (G)→ E(G). (38)

which restricts to a map

EQell
F (G)→ Eell(G). (39)

We define the subsets RE(G) ⊂ E(G) and REell(G) ⊂ Eell(G) to be the
images of the first and second maps respectively. We say that the set RE(G)
is the set of relevant global endoscopy of G and that REell(G) is the set of
relevant elliptic global endoscopy.

We now state the representation-theoretic analogue of I.2.6, part of a gen-
eral web of analogies between representation theory and conjugacy classes.
Such constructions appear for instance in works of Kottwitz (see the proof
of [Kot84b, Prop 11.3.2]) and Shelstad ([She83, §4.2]). We choose to provide
the details in this work.

For the remainder of this section, let us fix F to be a local or global field
and G a reductive group over F .

We shall use the notion of A-parameters which we now recall. To do this
we will be using the notion of the Langlands group LF as in the introduction
of [Art02]. When F is a local field such a group is WF ×SL2(C) but when F
is a number field the existence of such a Langlands group (for which we use
Langlands original pro-algebraic formalism) is conjectural. We shall then
only use its basic properties assumed for such a group as in loc. cit.

We shall denote by K the kernel of the projection map LF →WF which
is a connected pro-algebraic group over C (which we often tacitly identify
with its C-points).

We begin with the definition of an L-parameter since this will make the
definition of an A-parameter easier to parse:
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Definition I.2.8. Let LF be the Langlands group. Then, an L-parameter
for G is a continuous map φ : LF → LG such that the following conditions
hold:

1. The restriction of the map φ|K has image in Ĝ ⊆ LG and is algebraic

as a map K → Ĝ.

2. The diagram

LF
φ

//

!!

LG

��

WF

(40)

is commutative.

3. For all w ∈ LF the element φ(w) ∈ LG is semisimple or, in other
words, that under any representation LG → GLn(C) (in the sense of
[Bor79, §2.6]) the image of φ(w) is semi-simple.

Two L parameters φ1 and φ2 for G are said to be equivalent if there exists
g ∈ Ĝ such that

w 7→ g−1φ2(w)gφ1(w)−1 (41)

is a (locally) trivial 1 cocycle of LF taking values in Z(Ĝ).
In the case that F is local, we say that the L-parameter φ is relevant

if whenever φ(LF ) ⊂ P for P a parabolic subgroup of LG (in the sense of
[Bor79, §3]), then P is conjugate in LG to LP for some parabolic subgroup
P ⊆ G. In the case that F is global, we say that φ is relevant if for each
place v of F , we have φv := ψ|LFv is relevant.

We then move on to the slight variant of L-parameters known as A-
parameters:

Definition I.2.9. Let LF be the Langlands group. Then, an A-parameter
for G is a continuous map ψ : LF × SL2(C) → LG such that the following
conditions hold:

1. The restriction ψ|LF is an L-parameter.

2. The restriction ψ|SL2(C) takes image in Ĝ and the resulting map of
complex Lie groups is holomorphic.

3. The diagram

LF × SL2(C)
ψ
//

&&

LG

��

WF

(42)

is commutative.
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4. The image of ψ(LF ) in LG is bounded (i.e. relatively compact).

Two A parameters ψ1 and ψ2 for G are said to be equivalent if there exists
g ∈ Ĝ such that

w 7→ g−1ψ2(w)gψ1(w)−1 (43)

is a (locally) trivial 1 cocycle of LF × SL2(C) taking values in Z(Ĝ).
In the case that F is local, we say that the A-parameter ψ is relevant if

whenever ψ(LF × SL2(C)) ⊂ P for P ⊂ LG a parabolic subgroup, then P
is conjugate in LG to LP for some parabolic subgroup P ⊆ G. In the case
that F is global, we say that ψ is relevant if for each place v of F , we have
ψv := ψ|LFv×SL2(C) is relevant.

We also need the notion of when, for (H, s, η) an endoscopic triple for
G, two A-parameters ψH1 and ψH2 of H are Z(Ĝ)-equivalent. This definition
is as follows:

Definition I.2.10. Let (H, s, η) and endoscopic group of G. Then, two A-
parameters ψH1 and ψH2 of H are said to be Z(Ĝ)-equivalent if there exists

an element h ∈ Ĥ such that the map

w 7→ h−1ψH2 (w)hψH1 (w)−1, (44)

is a (locally) trivial 1-cocycle of LF × SL2(C) valued in Z(Ĝ).

We need the following definitions as in [Kot84b, §10].

Definition I.2.11. Let G be a reductive group over F and let ψ be an A
parameter for G. Then we define Cψ to be the set of g ∈ Ĝ such that g

commutes with the image of ψ. We also define Sψ as the set of g ∈ Ĝ such
that

w 7→ g−1ψ(w)gψ(w)−1, (45)

is a (locally) trivial 1-cocycle of LF × SL2(C) valued in Z(Ĝ). Note that
evidently Z(Ĝ) ⊆ Sψ and we define Sψ to be Sψ/Z(Ĝ).

We define an A-parameter ψ to be elliptic if ψ factors through no proper
Levi subgroup of LG and we have the following lemma of Kottwitz

Lemma I.2.12. The following are equivalent.

1. The parameter ψ is elliptic,

2. C◦ψ ⊂ Z(Ĝ),

3. S◦ψ ⊂ Z(Ĝ).

Proof. See [Kot84b, Lemma 10.3.1].
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We now move towards stating our desired bijection. We begin first by
defining the set on one side of the bijection. Roughly, this consists of A-
parameters for endoscopic groups for G. More precisely:

Definition I.2.13. Define the set EPF (G) to be equivalences classes of
quadruples (H, s, Lη, ψH) where Lη : LH → LG is an L-map, (H, s, Lη|

Ĥ
)

is an endoscopic datum, and ψH is an A-parameter of H such that Lη ◦ψH
is relevant.

Two quadruples (H1, s1,
Lη1, ψ

H
1 ) and (H2, s2,

Lη2, ψ
H
2 ) are equivalent if

there is an isomorphism α : H2 → H1 of endoscopic data such that Lα ◦ψH1
is Z(Ĝ)-equivalent to ψH2 . By I.2.3, note that the choice of Lα is unique up

to Ĥ1-conjugacy and that the notion of Z(Ĝ) equivalence does not depend
on this choice.

We define EPell
F (G) ⊂ EPF (G) to be the subset consisting of those tuples

such that (H, s, η) is an elliptic endoscopic datum and Lη ◦ ψH is elliptic.

We then have the following definition of the other set in our desired
bijection:

Definition I.2.14. Define the set SPF (G) of equivalence classes of pairs
(ψ, s) such that ψ is a relevant Arthur parameter of G and s ∈ Sψ. Two
pairs (ψ1, s1) and (ψ2, s2) are equivalent if ψ1 and ψ2 are equivalent by some
g ∈ Ĝ such that Int(g)(s1) and s2 are conjugate in Sψ2.

We define SPell
F (G) ⊂ SPF (G) to consist of those pairs such that ψ is

elliptic.

We can now finally state our desired bijection:

Proposition I.2.15. The map

[H, s, Lη, ψH ] 7→ [Lη ◦ ψH , η(s)] (46)

gives a well-defined bijection EPF (G) → SPF (G). Moreover, this map re-
stricts to a bijection

EPell
F (G)→ SPell

F (G). (47)

We now consider the case where F is a global field and G is a reductive
group over F . We have another construction analogous to that of RE(G)
and REell(G). Namely we define REP(G) to be the image of the projection

EPF (G)→ E(G), (48)

and REPell(G) to be the image of the projection

EPell
F (G)→ E(G). (49)

This suggests the following
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Question I.2.16. Is it true that

REP(G) = RE(G), (50)

and
REPell(G) = REell(G)? (51)

An important remark to make is that the previous discussion as well as
the statement of I.2.15 for global F are contingent on the definition of the
global Langlands group LF . In fact, our proof of I.2.15 uses this group in a
somewhat nontrivial way, as we need to use ψ to construct a Galois action on
Ĥ. We instead we prove the following result, which can be seen as evidence
of the conjectured inclusion REPell(G) ⊂ REell(G). This result carries no
hidden conjectures on the Langlands correspondence. In particular, we will
use it in the proof of our main result on the Scholze-Shin conjecture.

Theorem I.2.17. Suppose that F is a totally real number field. Suppose
that we have a triple (H, s, Lη) such that (H, s, η) is an endoscopic group for
G and Lη is an extension of η to LH. In particular, for each place v of F we
get an endoscopic datum (Hv, s,

Lηv) of Gv. Suppose further that for each
place v, we have an A-parameter ψH

v of Hv such that Lηv ◦ ψH
v is relevant.

We assume further that at each real place v∞, (Hv∞ , s, η) is elliptic and that
Hv∞ has an elliptic maximal torus. Then in fact (H, s, η) ∈ RE(G).

Remark I.2.18. The restriction that F is totally real is not really a strong
condition since it is almost implied by the later assumptions. In particular,
to have that HV∞ has an elliptic maximal torus for all infinite places v∞
implies, unless H is itself a torus, that F is totally real.

I.3 Proof of I.2.15

We now give the proof of the key bijection I.2.15. Before we begin the proof
in earnest, it will be helpful to establish two useful general lemmata.

The first is the following:

Lemma I.3.1. Let X be a complex reductive group. Let s ∈ X(C) be
semisimple and set Y := ZX(s)◦. Then, the map NX(Y ) → Out(Y ) given
on C-points by sending x ∈ NX(Y )(C) to Int(x)|Y has finite image.

Proof. Let us note that ZX(Z(Y ))◦ is contained in the kernel of the map
NX(Y ) → Out(Y ). Indeed, it suffices to show that ZX(Z(Y ))◦ ⊆ Y . We
first observe that s ∈ Z(Y ). Evidently s ∈ Z(ZX(s)) ⊆ ZX(s) so the
only non-trivial statement is that s is actually in ZX(s)◦ = Y . But, note
that since s is semisimple, we have s ∈ T (C) for T a maximal torus of
X. Hence s ∈ T (C) ⊂ Y and so s ∈ Y and thus s ∈ Z(Y ). Therefore,
ZX(Z(Y )) ⊆ ZX(s) and thus ZX(Z(Y ))◦ ⊆ ZX(s)◦ = Y .
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To finish the proof, it suffices to show that NX(Y )/ZX(Z(Y ))◦ is finite.
But, since ZX(Z(Y ))◦ is finite index in ZX(Z(Y )) it suffices to show that
NX(Y )/ZX(Z(Y )) is finite. Note though that NX(Y ) ⊆ NX(Z(Y )) since
Z(Y ) is a characteristic subgroup of Y . Thus, we get an inclusion

NX(Y )/ZX(Z(Y )) ↪→ NX(Z(Y ))/ZX(Z(Y )) (52)

and thus it suffices to show this latter group is finite. Of course, this is
equivalent to showing thatNX(Z(Y ))◦ and ZX(Z(Y ))◦ coincide. Since Z(Y )
is multiplicative (since Y is reductive by [Hum11, §2.2]) this claim follows
from [Hum12, Corollary, §16.3].

The second lemma is the following:

Lemma I.3.2. Let F be a field of characteristic 0. Let X be reductive group
over F and let S be a splitting of X. Then, given a finite Galois extension
F ′/F and a homomorphism ξ : Gal(F ′/F )→ Out(X), there exists a unique

quasi-split group H over F such that there is an isomorphism Ĥ
≈−→ X

equivariant (up to inner automorphisms).

Proof. Let Ψ be the based root datum associated to the triple (X,B, T ) and
let (X ′, B′, T ′) be the dual triple with associated root datum Ψ∨. Let X ′0
be the unique split model of X ′ over F . Note then that we have natural
isomorphisms of (constant) group (schemes)

Out((X ′0)F ) ∼= Out(X ′) ∼= Aut(Ψ∨) ∼= Aut(Ψ) ∼= Out(X) (53)

Note then associated to ξ is a homomorphism ξ∨ : Gal(F ′/F )→ Out((X ′0)F ).
Then, by Proposition IV.4.5 we get a unique associated quasi-split inner
form H of X ′0. Moreover, it’s clear from construction that the natural map
ΓF → Out(HF ) coincides with ξ∨. It is then not hard to see that we have a

natural isomorphism H
≈−→ X as desired.

We now return to the proof of Proposition I.2.15:

Proof. (Proposition I.2.15) We first define a map EPF (G)→ SPF (G). Pick
a representative (H, s, Lη, ψH) of [H, s, Lη, ψH ] ∈ EPF (G). We then get a
parameter ψ of G given by ψH ◦ Lη.

Now, by definition of endoscopic triple we have that w 7→ s−1w(s) is
a (locally) trivial 1-cocycle of WF with values in Z(Ĝ) and this induces a
(locally) trivial 1-cocycle of LF ×SL2(C) via the projection LF ×SL2(C)→
WF . But then we have for all w ∈ LF × SL2(C)

s−1ψH(w)sψH(w)−1 = s−1w(s) (54)

so that η(s) ∈ Sψ. Conversely, pick an equivalence class [ψ, s] ∈ SPF (G)

and pick a representative (ψ, s). Let s ∈ Sψ be a lift of s. Define Ĥ :=
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Z
Ĝ

(s)0 and define η to be the natural embedding Ĥ ↪→ Ĝ. Now, for any

g ∈ im(ψ) ⊂ LG, the map Int(g) : Ĝ → Ĝ stabilizes Ĥ and hence gives a
continuous homomorphism

ψ : LF × SL2(C)→ Out(Ĥ). (55)

given by sending an element (w, x) ∈ LF to the image of Int(ψ(w, x))|Ĥ
under the map Aut(Ĥ)→ Out(Ĥ). To see the continuity note that the map
LF ×SL2(C)→ LG is definitionally continuous. The map LG→ Aut(LG) is
also clearly continuous. The map Aut(LG)→ Out(Ĥ) is continuous as one
can clearly reduce to the split case in which case it reduces to checking the
continuity of the map Aut(Ĝ)→ Out(Ĥ) but this is clear since this map of
groups can be promoted to a functor of the associated group schemes. We
claim that ψ has finite image. To see this note that it suffices to show that
the image of NLG(Ĥ)→ Out(Ĥ) has finite image. Note though that there is
a finite extension E/F such that GE is split so that L(GE) is merely Ĝ×ΓE .
Since L(GE) is finite index in LG it’s not hard to see that we can reduce to the
case when G is split. The claim then immediately follows from Lemma I.3.1.
Now note that any continuous finite quotient of LF is of the form Gal(F ′/F )
for some finite extension F ′/F . Indeed, evidently SL2(C) has no non-trivial
finite continuous quotients. Thus, it suffices to prove the claim for LF . Now,
if K denotes the kernel of LF → WF then K is a connected pro-reductive
complex group. Thus, K also has no non-trivial finite continuous quotients.
Thus, we’ve reduced the claim to WF for which the claim is obvious. Thus,
we have associated to (s, ψ) a homomorphism ψ : Gal(F ′/F ) → Out(Ĥ)
which, by Lemma I.3.2, allows us to find a quasi-split group H over F whose
dual group is naturally isomorphic to Ĥ equivariant for the ΓF actions on
both sides.

We now claim that that (H, s, η) is an endoscopic datum for G. It
remains to check that the conjugacy class of η is ΓF -invariant and that the
image of s ∈ H1(F,Z(Ĝ)) is (locally) trivial. For the first check, we pick
w ∈ ΓF and need to show that the constructed action of w on Ĥ differs from
the action of w on Ĝ by an inner automorphism of Ĝ. In other words we
need to show that for all σ ∈ ΓF that there exists some gσ ∈ Ĝ such that

σ
Ĝ
◦ η ◦ σ−1

Ĥ
= Int(gσ) ◦ η (56)

This is true by construction. For the second property, we note that the image
of s in H1(F,Z(Ĝ)) is definitionally given by w 7→ s−1w(s) for w ∈ ΓF .
Since ΓF acts on Ĥ, and thus Z(Ĝ) ⊆ Ĥ, through Gal(F ′/F ) we see that
this cocycle is induced from a cocycle in H1(Gal(F ′/F ), Z(Ĝ)). Now we
observe that for any lift w′ ∈ LF × SL2(C) of w, we have

s−1ψ(w′)sψ(w′)−1 = s−1w(s). (57)
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Since s ∈ Sψ, this gives the desired result.
By our assumption that Gder is simply connected, we can extend η to a

map Lη : LH → LG. Then we need to check that the parameter ψ factors
through Lη. We shall follow techniques discussed in unpublished notes of
Kottwitz. Let us begin by defining the subgroup H of LG as the set of
elements x ∈ LG such that there exists an element y ∈ LH such that the
equality

Int(x) ◦ Lη = Lη ◦ Int(y), (58)

holds. Note that H depends only on Lη |
Ĥ

and, in particular, only on
the endoscopic triple (H, s, η). We then have the following observation of
Kottwitz:

Lemma I.3.3. The set H is a subgroup of LG which is a split extension of
WF by Ĥ.

Proof. The proof is due to unpublished work of Kottwitz.
There exists a finite extension K/F such that the action of ΓF on Ĥ

and Ĝ factors through ΓK . Now pick σ ∈ Gal(K/F ) and w ∈ WF such
that w projects to σ ∈ Gal(K/F ). Then (1, w) ∈ LH acts on Ĥ by σ. By
definition, there exists a gσ ∈ Ĝ such that Int(gσ) ◦ η = σ · η. Then

η ◦ (1, w) = Int(σ(gσ), w)) ◦ η, (59)

which implies H surjects onto WF .
Now the kernel of H → WF consists of x ∈ Ĝ such that there exists

y ∈ Ĥ and Int(x) ◦ η = η ◦ Int(y). Clearly η(Ĥ) is contained in this set.
Conversely, we have that Int(x−1η(y)) acts trivially on Ĥ. In particular,
x−1η(y) must centralize a maximal torus T̂H of η(Ĥ). Then T̂H is maximal
in Ĝ as well so x−1η(y) ∈ T̂H ⊂ η(Ĥ). Hence x ∈ η(Ĥ).

We now prove that the extension

1→ η(Ĥ)→ H→WF → 1 (60)

is split. We proceed as follows. Let T̂ ⊂ B̂ be maximal torus and Borel of Ĥ
and let T be the subgroup of H of elements preserving the pair (η(T̂ ), η(B̂)).
Then T is an extension of WF by η(T̂ ).

Then [Lan79, Lemma 4] says that if there exists a field K that is a finite
Galois extension of F such that the action of WF on T̂ factors through
Gal(K/F ), then T is split. Since this is the case, T is split so we can take
a splitting c : WF → T . Then this is also a splitting of H.

We then observe that for any Lη, we have Lη( LH) ⊂ H. In particular,
Lη gives a map of extensions of WF by η(Ĥ) and hence is an isomorphism
onto H.
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Thus, to show that ψ factors through Lη, we need only show that
im(ψ) ⊂ H. We need to show that for each x ∈ im(ψ), there exists y ∈ LH
such that the projections of x and y to WF agree and

Int(x) ◦ η = η ◦ Int(y), (61)

on Ĥ. First pick w ∈ LF × SL2(C) and consider ψ(w). Then we check
that there exists an element y ∈ LH such that Int(ψ(w)) ◦ η = η ◦ Int(y).
But indeed this follows immediately from the fact that the L-action of the
projection w ∈WF on Ĥ ⊂ LH differs from that of Int(ψ(w)) by an element
of Inn(Ĥ). We then define a parameter ψH such that Lη ◦ ψH = ψ.

We now show the map we have constructed is well-defined. First, one
can also easily show that choosing a different lift of s gives an isomorphic
endoscopic datum. Next, suppose that (ψ1, s1) is equivalent to (ψ2, s2) by
some g ∈ Ĝ satisfying w 7→ gψ1(w)g−1ψ(w)−1

2 is a (locally) trivial cocycle

of LF valued in Z(Ĝ). Then by assumption gs1g
−1 is conjugate by some

s ∈ Sψ2 to s2 and so the groups Ĥ1 and Ĥ2 are conjugate in Ĝ by sg. More-

over, it is easy to check that the map Int(sg) : Ĥ1 → Ĥ2 will preserve the
actions of ΓF up to an inner automorphism of Ĥ2 and hence descends to an
isomorphism α : H2 → H1 defined over F . The map α then gives an isomor-
phism of the endoscopic data (H1, s1, η1) and (H2, s2, η2) and LInt(sg) ◦ψH1
is Z(G)-equivalent to ψH2 . This shows the map is well-defined.

To conclude the proof, we must show that the maps EPF (G)→ SPF (G)
and SPF (G)→ EPF (G) that we have constructed are inverses of each other.
It is clear that the composition SPF (G) → EPF (G) → SPF (G) is the
identity. Indeed, the first map sends [s, ψ] to an element of EPF (G) of the
form [H, s, Lη, ψH ] where s is a lift of s to Sψ and Lη ◦ψH = ψ. The second

map then takes [H, s, Lη, ψH ] to [η(s), Lη ◦ψH ]. But, by definition η(s) = s
and Lη ◦ ψH = ψ from where the conclusion follows.

We now show that the composition EPF (G) → SPF (G) → EPF (G)
is the identity. Take a representative (H, s, Lη, ψH) of [H, s, Lη, ψH ] ∈
EPF (G). Then we want to show that this is equivalent to the tuple (H ′, s′, Lη′, ψH

′
)

that we get from applying the composition EPF (G)→ SPF (G)→ EPF (G)
to (H, s, Lη, ψH). Note that, up to equivalence, we can assume that s′ = s

and so we have a map of complex Lie groups η′−1 ◦ η : Ĥ → Ĥ ′.
We claim this map is equivariant for each w ∈ ΓF up to conjugation by

some h ∈ Ĥ. There exists some finite extension E/F such that the actions
of ΓF on both groups factor through Gal(E/F ) hence we need only prove
the claim for w ∈ Gal(E/F ). Pick a lift w′ ∈ LF × SL2(C) of w, the action
of w on each group differs by an inner automorphism from the action of
conjugation by ψH(w′) or ψH

′
(w′) respectively. So then we have (up to
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conjugation which we denote by ∼) for h ∈ Ĥ:

(w · (η′−1 ◦ η))(h) = w(η′
−1
η(w−1(h)) (62)

∼ Int(ψH
′
(w′))(η′

−1
η(Int(ψH(w′)−1)(h)) (63)

= (η′
−1 ◦ Int(ψ(w′)) ◦ Int(ψ(w′)−1) ◦ η)(h) (64)

= (η′ ◦ η)(h). (65)

This proves the claim and implies that the isomorphism descends to an
isomorphism α : H ′ → H defined over F . This satisfies α̂(s) = s′ mod Z(Ĝ)
and hence gives the desired isomorphism of endoscopic data. Moreover, it
is clear that we have an equivalence (H, s, Lη, ψH), (H ′, s′, Lη′, ψH

′
).

We now check that the bijection restricts to give a bijection

EPell
F (G)→ SPell

F (G). (66)

We need to check that if [ψ, s] ∈ SPF (G)ell, then the tuple (H, s, Lη, ψH)
we construct from (ψ, s) satisfies that (H, s, η) is elliptic. But we have
η((Z(Ĥ)ΓF )0) ⊂ η(C0

ψH
) ⊂ C0

ψ ⊂ Z(Ĝ) as desired. Note that the last

equality holds by [Kot84b, lemma 10.3.1].

I.4 Proof of I.2.17

We now prove our main result on relevancy of global endoscopy. We need
to construct a (G,H)-regular γH ∈ H(F ) such that γH transfers to some
elliptic γ ∈ G(F ). To do so, we first need the following proposition.

Proposition I.4.1 ([Kot90, pg 188]). G be a group over a totally number
field F . Let (H, s, η) be an endoscopic datum of G such that (Hv, s, η) is
elliptic for all infinite places v of F . Let γH ∈ H(F ) be a (G,H)-regular
semisimple element such that γH transfers to an element of G(Fv) for each
place v of F and γH is elliptic as an element of H(Fv) for all infinite places
v of F . Then in fact, γH transfers to a semisimple γ ∈ G(F ).

Let us note that it suffices to consider the case when F = Q. Indeed, set
G′ := ResF/QG and set (H′, s′, η′) to be so that H′ = ResF/QH, the element

s′ := (s, ..., s) ⊂ Ĥ′ = Ĥm (where m := [F : Q]), and η′ is the map Ĥ′ → Ĝ′

given by
η′(h1, . . . , hm) := (η(h1), . . . , η(h1), . . . , η(hm)) (67)

Then, if we let γH′ be equal to γH as an element of H′(Q) = H(F ) we get
the desired result.

Before we begin the proof in earnest, we record here a general fact:
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Lemma I.4.2. Let X be a reductive group over a field F . Then, there is a
short exact sequence of ΓF -modules

1→ K → Z(X̂)◦ → Ẑ(X)◦ → 1 (68)

where K is some finite ΓF -module. If F is a local field, this in turn induces
a natural isogeny of abelian groups

(Z(X̂)◦)ΓF → (Ẑ(X)◦)ΓF (69)

Proof. Let us begin by noting that we have a short exact sequence of con-
nected reductive F -groups

1→ Z(X)◦ → X → Q→ 1 (70)

where Q := X/Z(X)◦ is semisimple. We then get a short exact sequence of
ΓF -modules

1→ Z(Q̂)→ Z(X̂)→ Ẑ(X)◦ → 1 (71)

Note that since Q is semisimple, Z(Q̂) is finite (e.g. [Kot84b, (1.8.4)]) from
where the first part of the proposition follows.

Let us now consider the associated long exact sequence of ΓF -modules

1→ Z(Q̂)ΓF → (Z(X̂)◦)ΓF → (Ẑ(X)◦)ΓF → H1(F,Z(Q̂)) (72)

We are then done by observing that since F is a local field that H1(F,Z(Q̂))
is finite.

Proof. (Proposition I.4.1) By assumption there exists a γ ∈ G(A) such that
γH transfers to γ. Let ψ : G∗ → G be a quasisplit inner twist of G. By
[Kot82, Theorem 4.1], γH transfers to some γ∗ ∈ G∗(Q).

Now, as in [Kot86b, §6], the elements γ∗, γ determine an element obs(γ) ∈
K(Iγ∗/Q)D such that γ is conjugate in G(A) to an element of G(Q) if and
only if obs(γ) is trivial.

Lemma I.4.3. The element γ∗ ∈ G(R) is R-elliptic.

Proof. Since γH is (G,H)-regular and elliptic in H(R), it follows that γ∗ is
elliptic in G∗(R). Indeed, recall first that since H is an endoscopic group of
G that Z(G) ⊆ Z(H) as Q-groups (e.g. see the second to last paragraph of
[Shi10, Page 5]). Note then that since γH is (G,H)-regular that Iγ and Iγ∗

are inner forms (e.g. see [Kot86b, §3]). Thus,

Z(G) ⊆ Z(H) ⊆ Z(Iγ) = Z(Iγ∗) (73)

holds and thus

Z(GR) ⊆ Z(HR) ⊆ Z(Iγ,R) = Z(Iγ∗,R) (74)

30



holds by base change.
To show that γ∗ is elliptic we need to show that Z(Iγ∗,R)◦/Z(GR)◦ is R-

anisotropic. By assumption we have that Z(Iγ,R)◦/Z(HR)◦ is R-anisotropic.
Since (H, s, η) is R-elliptic we have that Z(HR)◦s = Z(GR)◦s (e.g. see the
second to last paragraph of [Shi10, Page 5]), which implies the desired con-
sequence.

Lemma I.4.4. The containment (Z(Îγ∗)
Γ∞)◦ ⊂ Z(Ĝ) holds.

Proof. Begin by noting that

Z(Îγ∗)
Γ∞ = Z(Îγ∗,R)Γ∞ (75)

Now, by assumption we have that T := Z(Iγ∗,R)◦ is an elliptic torus in

GR. Then, by lemma IV.1.37 implies that (T̂ /Z(Ĝ))Γ∞ is finite (note that

Z(Ĝ) = Z(ĜR) so we ignore the difference). Thus, a foritiori, we know
that T̂Γ∞/Z(Ĝ)Γ∞ is finite. In particular, since (Z(Ĝ)Γ∞)◦ is finite index
in Z(Ĝ)Γ∞ , we have that (Z(Ĝ)Γ∞)◦ is finite index in T̂Γ∞ .

Now, note that we’re trying to show that ((Z(Îγ∗,R)Γ∞)◦ ⊆ Z(Ĝ) so

it suffices to show that (Z(Îγ∗,R)Γ∞)◦ = (Z(Ĝ)Γ∞)◦. Note that evidently

(Z(Ĝ)Γ∞)◦ is contained in (Z(Îγ∗,R)Γ∞)◦, and since the latter is connected
it suffices to show that the former is finite index in the latter.

Now, we know that (Z(Ĝ)Γ∞)◦ is finite index in T̂Γ∞ . Note though that
by Lemma I.4.2 we have an isogeny of abelian groups

(Z(Îγ∗,R)◦)Γ∞ → ((Z(Iγ∗,R)◦)̂ )Γ∞ =: T̂Γ∞ (76)

which is equivariant for the inclusions of (Z(Ĝ)Γ∞)◦ on both sides. In
particular, since (Z(Ĝ)Γ∞)◦ is finite index in T̂ΓF it’s also finite index in

(Z(Îγ∗,R)◦)Γ∞ .
Note then that we have the exact sequence of Γ∞-modules

1→ Z(Îγ∗,R)◦ → Z(Îγ∗,R)→ π0(Z(Îγ∗,R))→ 1 (77)

which gives us the exact sequence

1→ (Z(Îγ∗,R)◦)Γ∞ → Z(Îγ∗,R)Γ∞ → π0(Z(Îγ∗,R))Γ∞ (78)

which shows that, since π0(Z(Îγ∗,R)) is finite, that (Z(Îγ∗,R)◦)Γ∞ is finite

index in Z(Îγ∗,R)Γ∞ . Since (Z(Ĝ)Γ∞)◦ is finite index in (Z(Îγ∗,R)◦)Γ∞ it

follows that it’s also finite index in Z(Îγ∗,R)Γ∞ . It follows that (Z(Ĝ)Γ∞)◦

must be finite index in (Z(Îγ∗,R)Γ∞)◦ from where the conclusion follows.

Now, the action of Γ on Z(Îγ∗) factors through some finite quotient ΓK
let σ be the nontrivial element of ΓR. This gives a conjugacy class {σ} ⊂ ΓK .
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Then by Cebotarev Density, we can find some finite place v of Q such that
the conjugacy class of Frobv equals {σ}. In particular, for such a v, we have

(Z(Îγ∗)
Γv)0 ⊂ Z(Îγ∗)

Γ∞ ⊂ Z(Ĝ). (79)

Now, recall that the set of G(Qv) conjugacy classes in the stable conju-
gacy class of γ∗ is in bijection with ker[H1(Qv, Iγ∗) → H1(Qv,G)]. Then
by the Kottwitz isomorphism we have the bijection

ker[H1(Qv, Iγ∗)→ H1(Qv,G)] ∼= ker[π0(Z(Îγ∗)
Γv)D → π0(Z(Ĝ)Γv)D].

(80)

Now, K(Iγ∗/Qv) equals the image of Z(Îγ∗)
Γ
v under the map

Z(Îγ∗)
Γ
v → [Z(Îγ∗)/Z(Ĝ)]Γv . (81)

Since the kernel of this map is Z(G)Γv and we have shown that in our case

(Z(Îγ∗)
Γ)0 ⊂ Z(Ĝ), (82)

it follows that in fact, the map

Z(Îγ∗)
Γ
v → [Z(Îγ∗)/Z(Ĝ)]Γv (83)

factors through π0(Z(Îγ∗)
Γv) and hence, we have an exact sequence

π0(Z(Ĝ)Γv)→ π0(Z(Îγ∗)
Γv → K(Iγ∗/Qv)→ 1. (84)

Dualizing gives

K(Iγ∗/Qv)
D = ker[π0(Z(Îγ∗)

Γv)D → π0(Z(Ĝ)Γv)D], (85)

and so in conclusion, we have a bijection

ker[H1(Qv, Iγ∗)→ H1(Qv,G)]� K(Iγ∗/Qv)
D. (86)

By definition, we have a surjection

K(Iγ∗/Qv)
D � K(Iγ∗/Q)D. (87)

Finally, we observe that K(Iγ∗/Qv) ∼= K(Iγ/Qv) so that we in fact have a
surjection

ker[H1(Qv, Iγ)→ H1(Qv,G)]� K(Iγ∗/Q)D. (88)

In particular, it follows that we can modify γ at the place v by some stable
conjugate such that obs(γ) vanishes. This then implies the desired result.
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We now return to the proof of I.2.17. By I.4.1, we just need to find a
semisimple (G,H)-regular γH ∈ H(F ) that transfers to each G(Fv) and is
elliptic at each real place.

We now reduce the question of transferring γH to that of transferring a
torus T of H. More precisely, we record the following lemma

Lemma I.4.5. Let (H, s, η) be an endoscopic group for G such that H and
G are defined over a local field F . Suppose T ⊂ H is a maximal torus defined
over F and that T transfers to G in the sense of [Shi10] after remark 2.6.
Then for any semisimple γ ∈ T(F ), we have that γ transfers to G(F ) in the
sense of [Shi10, §2.3].

Proof. This is clear from definition.

Hence, to prove I.2.17, it suffices to find a maximal torus T ⊂ H defined
over F that transfers to G since the (G,H)-regular elements are dense in T.
By IV.1.12, there exists a T defined over F and such that for each place v of
F that Gv is not quasisplit, we have Tv is elliptic. In the quasisplit cases, it is
clear that Tv transfers. Hence it suffices to show that if (Hv, s,

Lηv, ψ
H
v ,Tv)

is such that (Hv, s, ηv) is an endoscopic datum, ψH
v is an A-parameter of

Hv such that Lη ◦ ψH
v is a relevant parameter of Gv, and Tv is an elliptic

maximal torus of Hv defined over Fv, then Tv transfers to Gv.
Now consider the torus ηv((Z(Ĥv)

ΓFv )◦) ⊂ Ĝv. Then the centralizer of
this torus in LGv surjects onto WFv since it contains Lη( LHv). In partic-

ular, we have that ZLGv
(ηv((Z(Ĥv)

ΓFv )◦)) is a Levi subgroup of LGv by
[Bor79, Lemma 3.5]. To simplify notation, we denote this subgroupM. By
assumption, since clearly Lηv factors through M, we have that M is rele-
vant. HenceM in conjugate by an element of Ĝv to a subgroup LM ⊂ LGv

such that M ⊂ Gv is a standard Levi subgroup. Since we are only concerned
with the endoscopic datum (Hv, s, ηv) up to isomorphism, we can replace it
with any isomorphic datum (Hv, s, ηv ◦ Int(g)). In particular, we can and
do assume without loss of generality that M = LM .

We claim that (Hv, s, ηv) is an elliptic endoscopic datum for M . We
first check that (Hv, s, ηv) is an endoscopic datum for M . To see that the
conjugacy class of ηv is ΓFv -invariant, we note that Lη(LHv) ⊂ M. Since

WFv and ΓFv act through some finite quotient Gal(K/Fv) on Ĥv and Ĝv, it
suffices to show that the conjugacy class of η is invariant under the action
of some arbitrary σ ∈ Gal(K/Fv). Let w ∈ WFv be a lift of σ. Then
Lη(1, w) = (m,w) ∈ LM and we have

σ · η = σ
Ĝv
◦ η ◦ σ−1

Ĥv
(89)

= Int((1, w)) ◦ η ◦ Int((1, w−1)) (90)

= Int((1, w)(w−1(m−1), w−1)) ◦ η (91)

= Int(m−1) ◦ η, (92)
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as desired. The only remaining check to show that (Hv, s, ηv) is an endo-

scopic datum is that the image of s in H1(Fv, Z(M̂)ΓFv ) is trivial, but this
follows immediately from the functoriality of these cohomology groups. Fi-
nally, to prove that the datum is elliptic, we observe that by assumption,
ηv((Z(Ĥv)

ΓFv )◦) ⊂ Z(M̂).
Now, we transfer Tv to M∗ and observe that since the endoscopic datum

is elliptic, Tv must be elliptic in M∗. In particular, it follows that Tv

transfers to M and therefore Gv. This completes the proof.

I.5 No relevant global endoscopy

Our goal in this section is to discuss the case where a group G possesses no
relevant endoscopic groups other than the trivial one.

Namely, let us make the following definition:

Definition I.5.1. Let G be a reductive group over a number field F . We
say that G has no relevant global endoscopy if RE(G) consists (up to equiv-
alence) only of the trivial endoscopic triple (G, e, id). We say that G has
no relevant global elliptic endoscopy if REell(G) consists (up to equivalence)
only of the trivial endoscopic triple (G, e, id).

We make the following useful observation:

Lemma I.5.2. Let G be a reductive group over a number field F . Then, G
has no relevant global endoscopy if and only if for all semi-simple γ ∈ G(F )
we have that K(Iγ/F ) = 0. Similarly, G has no relevant global ellip-
tic endoscopy if for all semi-simple and elliptic γ ∈ G(F ) we have that
K(Iγ/F ) = 0.

Proof. Suppose first that G has no relevant global endoscopy. Pick (γ, κ) ∈
SSF (G). Note then that by Proposition I.2.6, we get an element (H, s, η, γH) ∈
EQF (G) associated to (γ, κ). By assumption, we then know that (H, s, η) ∼
(G, e, id) and so in particular, η(s) ∈ Z(Ĝ), which implies κ is trivial.

Conversely, suppose that K(Iγ/F ) is trivial for all semi-simple γ ∈ G(F ).
Let (H, s, η) be an element of RE(G). Choose some semi-simple γH ∈ H(F )
such that (H, s, η, γH) is an element of EQF (G). Note that by Proposition
I.2.6 we get associated to this quadruple a pair (γ, κ) ∈ SSF (G). By our
assumption we have that κ = 0. Pick a transfer γ∗ of γ to G∗(F ). Then
(G∗, e, id, γ) is an element of EQF (G) which maps to (γ, 0) under Proposi-
tion I.2.6. Thus, we deduce that (H, s, η, γH) ∼ (G∗, e, id, γ) as desired.

The elliptic version is similar.

We will be mostly interested in reductive groups G such that Gad is F -
anisotropic and which satisfy the Hasse principle (i.e. that ker1(F,G) = 0),
in which case the condition of no relevant global (elliptic) endoscopy takes
the following particularly simple form:
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Proposition I.5.3. Let F be a number field and G be a reductive group
over F . Assume further that Gad is F -anistropic and satisfies the Hasse
principle. Then, the following are equivalent:

1. G has no relevant global endoscopy.

2. G has no relevant global elliptic endoscopy.

3. For all maximal F -tori T ⊂ G one has that the containment
Z(Ĝ)Γ ⊆ T̂Γ is actually an equality.

Proof. Let us begin by observing that 1. and 2. are equivalent simply
because every semi-simple element of G(F ) is elliptic. Thus, it suffices to
prove the equivalence of 1. and 3.

Note that since G satisfies the Hasse principle, we have that ker1(Γ, Z(Ĝ))
vanishes (e.g. see [Kot84b, Remark 4.4]). Thus, it’s fairly easy to see that
for any semi-simple γ in G(F ) we have that

K(Iγ/F ) = Z(Îγ)Γ/Z(Ĝ)Γ (93)

and thus the implication of 3. implies 1. follows immediately from Lemma
IV.1.36. The implication that 1. implies 3. would follow quite simply if every
maximal torus T in G were of the form Iγ for some semi-simple γ ∈ G(F ).
But, this follows immediately from Theorem IV.1.20.

I.6 An application to the representation theory of
unitary groups

In this section, we derive some results on the representation theory of global
unitary groups with no relevant global endoscopy. In particular, we show
that the relevant elliptic A-parameters of such groups satisfy Sψ = 1. While
one could prove this in enough cases using special assumptions to prove our
main result, we prefer the present, more systematic, approach.

Let F/Q be a total real extension of number fields and E/F be a
quadratic imaginary extension. Let n be an odd natural number and (UE/F (n), ω)
be an inner twist of UE/F (n)∗ having no relevant endoscopy. Such a group
exists by III.1.2.

In the course of our proof, we need to appeal to the bijection I.2.15 in the
global case. To avoid making assumptions about the global Langlands group
LQ, we work with “automorphic A-parameters” in the sense of [KMSW14,
§1.3.4]. This notion is originally due to Arthur [Art13a]. We note that an
automorphic parameter yields at each place v of F , a localization ψv which is
an A-parameter of Uv [KMSW14, §1.3.5]. Moreover, one can make sense of
the groups Cψ and Sψ for such parameters [KMSW14, §1.3.4]. In particular,
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we note that the words elliptic and relevant make sense for automorphic
parameters. Thus, a first step is to prove a version of I.2.15 for automorphic
parameters.

Proposition I.6.1. Let E/F be a quadratic extension of number fields. Let
U be an inner form of UE/F (N)∗. Let us make the following notational
definitions

• Set AEPF (U) to be the set of all quadruples (H, s, Lη, ψe) where (H, s, Lη)
is an extended endoscopic datum of U And ψe = (ψn, ψ̃e) ∈ Ψ(H, Lη)
(as in [KMSW14, §1.3.6]).

• Set ASPF (U) to be the set of all pairs (s, ψ) where ψ = (ψn, ψ̃) ∈
Ψ(U, ηχk) and s ∈ Sψ.

We then have a bijection AEPF (U)→ ASPF (U) given by

[H, s, Lη, ψH ] 7→ [Lη ◦ ψ̃e, η(s)], (94)

Moreover, this bijection is compatible via localization with the local ver-
sion of I.2.15 using the localization map in [KMSW14, §1.3.5].

Proof. The bijection is constructed analogously to the proof of I.2.15. We
first define the inverse map. Given [s, ψ] ∈ ASPF (U) we need to construct
an element of AEPF (U), In particular, Lψ is an extension of WF by a pro-
reductive group just as LF was. Since this was the key property of LF
that we used, we can construct the datum (H, s,L η) using a lift of s and
ψ̃ : Lψ → LU as in the proof of I.2.15. Then we can conclude as before that
ψ̃ factors through the image of Lη and hence gives rise to a parameter ψe

such that ηχ ◦ Lη ◦ ψ̃e = ψ̃n as desired. As in I.2.15 we conclude that this
map is the desired inverse.

Now we prove compatibility with the local version of I.2.15. We need
to show that if v is a place of F , then the bijection in I.2.15 identifies
[Hv, sv,

Lηv, ψ
e
v] with [s, ψv]. This follows from the commutative diagram

after Proposition 1.3.3 in [KMSW14].

I.6.1 The Triviality of Sψ

In this subsection, we prove that relevant elliptic parameters of the group
U := UE/F (n) satisfy Sψ = 1.

Proposition I.6.2. Let ψ be a relevant elliptic automorphic A-parameter
of U such that for some infinite place v∞ of F , we have ψv∞ is elliptic.
Then we have Sψ = 1.

Proof. Suppose for contradiction that Sψ has a nontrivial element s and pick
a lift s ∈ Sψ.
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Then for each place v of F , we see that identifying Û ⊂ LU with Ûv ⊂
LUv, we get that s ∈ Sψv so that (ψv, sv) ∈ SPFv(Gv) and hence by I.2.15
we get an endoscopic datum (Hv, sv, ηv) of Gv. Under our identifications,

Ĥv ⊂ LGv and ηv is the inclusion map. Moreover ηv(sv) = s. In particular,

we have for all v that ηv(Ĥv) = Z
Ĝ

(s)0.
By I.6.1, we get a datum [H, s, Lη, ψe] ∈ AEPF (U). In particular, we

have a global endoscopic datum (H, s, η) that localizes at each place v to
(Hv, sv, ηv). Now, v∞ ramifies over E since E/F is imaginary and hence
Uv∞ is an inner form of UEv∞/Fv∞ (n). Since we assumed ψv∞ is elliptic, it
follows from I.2.15 that (Hv∞ , sv∞ , ηv∞) is an elliptic endoscopic datum.

We now pick a lift Lη of η and note that for each place v, we get a map
Lηv. Now, we recall that the choice of the lift Lηv in the construction of the
map SPF (Gv)→ EPF (Gv) is arbitrary and picking a different lift does not
change (Hv, s, ηv). In particular, we could have picked at each place v, the
lift Lηv of ηv that we got from localizing Lη. Note however that doing so
does change the parameters ψHv .

In particular, we now have, without loss of generality, a tuple (H, s, Lη)
and for each v ∈ F , a parameter ψHv of Hv such that Lηv ◦ψHv is relevant.
Furthermore, since ψ∞ was assumed to be elliptic, (H∞, s, ηv) is elliptic.
Furthermore, H is a product of unitary groups and so has an elliptic maximal
torus. In particular, we are now in the situation to apply I.2.17. We get
that there exists a semisimple γH ∈ H(F ) such that (H, s, η, γH) ∈ RE(U).
Now by I.2.6 we get an element (γ, κ) ∈ SSell

F (G). Since s is nontrivial in
Sψ, it follows that κ is nontrivial. This contradicts that for U, all K(Iγ/F )
are trivial.

I.6.2 Isotypic Components

Now, let G = ResF/QU and choose χκ,Ξ for U as in [KMSW14, Thm.
1.7.1]. Then it follows from that theorem that we have a decomposition

L2
disc(U(F )\U(AF )) =

⊕
ψ∈Ψ2(U∗,ηχκ )

⊕
π∈Πψ(U,ω,εψ)

π. (95)

Now we fix a representation π of G(AQ) that is discrete at ∞. Since
G(AQ) = U(AF ), we can equivalently consider π to be a representation of
U(AF ). We call this representation π′ so as to avoid confusion. Now, at
any place p of Q, we have

πp =
⊗
v|p

π′v. (96)

Then the Satake parameters of π′ determine a unique parameter ψπ′ of
U such that π′ ∈ Πψπ′ (U, ξ). Since π′ is discrete at each infinite place, it
follows that ψπ′ has trivial Arthur SL2-factor and hence is generic. Hence by
the comment after equation [KMSW14, (1.2.4)], we have that each element
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of Πψπ′ (U, ω) is irreducible. Moreover each element of the packet appears
with multiplicity 1 by the global multiplicity formula.

Now by I.6.2, it follows that Πψπ′ (U, ω, εψπ′ ) = Πψπ′ (U, ω) or, in other
words, the condition involving εψπ′ is vacuous. In particular, if we let π′p

denote the factor of π that is the complement of
⊗
v|p

π′v, then we have

L2
disc(U(F )\U(AF ))[π′

p
] =

⊗
v|p

⊕
π′v∈Πψ

π′v
(Uv ,ω)

π′v (97)

We can define a parameter ψπ of the group G. Since Gp =
∏
v|p

Uv, it

follows that ⊕
πp∈Πψπp (G(Qp),ω)

πp =
⊗
v|p

⊕
π′v∈Πψ

π′v
(Uv ,ω)

π′v. (98)

In particular, we record the following result.

Lemma I.6.3. We have the following decomposition.

L2
disc(G(Q)\G(A))[πp] =

⊕
ψπp∈Πψp (G(Qp),ω)

πp. (99)
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Part II

The `-adic cohomology of
compact Shimura varieties

with no endoscopy
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II.1 Introduction

We state in this section a result on the decomposition of the cohomology of
certain compact Shimura varieties Sh(G, X) in the case when (G, X) has no
relevant global endoscopy (in the sense of §I.5). The results here are largely
a technical generalization of the results in [Kot92a] using the newly proven
results of [KSZ] checking, in all cases, that the methods of [Kot92a] work in
this more general setting under the umbrella assumption of no endoscopy.

This decomposition will be key to understanding the Scholze–Shin con-
jecture at a given bad place in terms of the already established Scholze–Shin
conjecture at a good place which, at least in the case of the trivial endoscopic
triple, is just a rephrasing of the results of [Kot84a].

II.2 Statement of the decomposition result

Let us now state the decomposition result of interest to us. To do this, we
begin by detailing the necessary setup.

We start with a Shimura datum (G, X) which we assume to be of abelian
type. We assume further that our group satisfies Axiom SV5 of [Mil04]. By
[Mil04, Theorem 5.26] (and the succeeding discussion) this is equivalent
to assuming that (AG)R = AGR . We assume further that G/Z(G) is Q-
anisotropic. Note that this implies that if T is a maximal torus in G then
TR is an elliptic maximal torus in GR. Thus, in particular, we see that G(R)
has discrete series (see [Kna01, Theorem 12.20]). We also assume that Gder

is simply connected.
Most importantly, we assume that the group G has no relevant global

endoscopy (in the sense of §I.5). This is the key assumption which makes
the proof of Theorem II.2.1 below possible.

Let us fix a prime ` and let ξ be an algebraic Q`-representation of G
(i.e. an algebraic representation ξ : GQ` → GLQ`(V ) for some Q`-space V )
which induces a representation

G(Af )
proj.−−−→ G(Q`) ↪→ G(Q`)→ GLQ`(V )

which we also denote ξ.
Let us also note that from the conjugacy class X one obtains a conjugacy

class of cocharacters µ of GC as on [Mil04, Page 111] which (as in loc. cit.)
induces a unique conjugacy class of cocharacters, also denoted µ, over Q.
Moreover, by definition, the reflex field E(G, X) is precisely the reflex field
of µ as in §IV.1.4. We denote this field by Eµ. Then, by the contents of

§IV.1.4 we obtain a representation rµ : ĜoWEµ → GL(V (µ)).

Finally, fix an isomorphism ιl : Q`
∼= C which we implicitly use through-

out the sequel. In particular, via ι` we get an algebraic representation ξC
over C.
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With these assumptions, and in the notation as above the following holds:

Theorem II.2.1. There is a decomposition of virtual Q`[G(Af ) ×WEµ ]-
representations

H∗(Sh,Fξ) =
⊕
πf

πf � σ(πf ), (100)

where πf ranges over admissible Q`-representations of G(Af ) such that there
exists an automorphic representation π of G(A) such that;

1. πf ∼= (π)f (using our identification Q`
∼= C)

2. π∞ ∈ Π∞(ξ).

Moreover, for each πf there exists a cofinite set S(πf ) ⊆ Sur(πf ) of primes
p such that for each prime p over Eµ lying over p and each τ ∈ WEµp

the
following equality holds:

tr(τ | σ(πf )) = a(πf ) tr(τ | r−µ ◦ ϕπp)p
1
2
v(τ)[Eµp:Qp] dim Sh, (101)

for some integer a(πf ) (see Definition II.3.5).

As stated in the introduction, the proof of this result (closely imitating
[Kot92a]) is broken up in to three main steps. These, very roughly, go as
follows:

• Step 1: Construct a function f which projects the cohomology
H∗(Sh,Fξ) on to its πf -isotypic component so that, by
construction, the quantity tr(f × τ | H∗(Sh,Fξ)) agrees
with left-hand side of (101).

•Step 2: Use results of Kisin-Shin-Zhu in [KSZ] to express the quan-
tity tr(f × τ | H∗(Sh,Fξ)) in terms of sums of orbital
integrals.

•Step 3: Pseudo-stabilize the result to obtain the right-hand side
of (101).

The rest of Part I will be dedicated to carefully carrying out this proof
step-by-step.

II.3 The function f

In this section we construct a smooth function f : G(A) → C alluded to
in Step 1 from the previous section. This function f , which will admit a
factorization f = f∞f

∞, is deceptively notated since it really depends on
the following data:
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• An admissible Q`-representation πf of G(Af ).

• A compact open subgroup K of G(Af ) such that πf has a non-zero
K-invariant vector.

• The set Π0
∞(ξ).

The function f will be constructed in a highly non-explicit way. This is
relevant since the entrance of the cofinite set S(πf ) ⊆ Sur(πf ) in Theorem
II.2.1 enters in to the picture via f . Namely hidden in Step 2 of the outline
from the previous section is the assumption that at p one can decompose f
as f = fp1K0,p . Thus, the inexplicitness of f is part and parcel with the
inexplicitness of the cofinite set S(πf ).

II.3.1 The construction of f∞ and basic properties

Let us begin by recalling the basic setup of the theory of pseudo-coefficients
in the context that we need them. Let us fix χ to be a smooth character
AG(R)0 → C×. We then define the following set:

Definition II.3.1. The set H (G(R), χ) is the set of all smooth functions
f : G(R)→ C such that

1. f(ag) = χ(a)f(g) for all a ∈ AG(R)0.

2. The function fχ−1 : G(R)/AG(R)0 → C is compactly supported.

Let us now consider the set Π∞(χ) of irreducible admissible representa-
tions of G(R) with central character χ and let Π0

∞(χ) denote the subset of
Π∞(χ) consisting of those elements which are discrete series for G(R). Let
us note that for a fixed π0

∞ ∈ Π0
∞(χ) we make the following definition:

Definition II.3.2. A pseudo-coefficient for π0
∞ is an element fπ0

∞
∈H (G(R), χ−1)

such that for all tempered π∞ ∈ Π∞(χ) we have that

tr(fπ0
∞
| π∞) =

{
1 if π∞ ∼= π0

∞
0 if otherwise

(102)

Let us be clear about what the above trace means. Namely, for π∞ in
Π∞(χ) we set tr(fπ0

∞
| π∞) to be the trace of the operator

v 7→
∫
G(R)/AG(R)0

fπ0
∞

(g)π∞(g)(v) dg (103)

which is well-defined since the product of fπ0
∞

and π∞ transform by the iden-
tity under AG(R)0 and since fπ0

∞
is compactly supported on G(R)/AG(R)0.

The existence of such pseudo-coefficients can be deduced from the re-
search announcement [CD85], with a full proof found in the references of
said paper.
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Let us now fix an element π0
∞ ∈ Π0

∞(ξ) which, in particular, is an element
of Π0

∞(χ−1
ξ ). Let us denote by fπ0

∞
∈ H (G(R), χ∞) the pseudo-coefficient

of π0
∞ in the sense discussed above.
We record the following equality:

Proposition II.3.3. For any γ∞ ∈ G(R) semisimple, the following equality
holds:

SOγ∞(g) =

{
tr(ξ(γ∞))vol(AG(R)0/I∞(R))−1e(I∞) if γ∞ ∈ G(R)ell

0 if otherwise

(104)
where g := (−1)dim Shfπ0

∞
and I∞ is the unique anisotropic modulo center

inner form of Iγ∞.

Remark II.3.4. Note that the existence of I∞ follows from Lemma IV.1.11.
Indeed, since we are assuming that G(R) has an elliptic maximal torus we
know from Corollary IV.1.9 that for γ∞ ∈ G(R)ell we have that γ∞ ∈ T (R)
for some maximal elliptic torus T of GR. Note then that T ⊆ Iγ∞ and thus
Iγ∞ has an elliptic maximal torus, which shows that Lemma IV.1.11 applies.

Let us note that in the above formula the quantity SOγ∞(g) is sensical
(in the sense that the integrals defining this stable orbital integral converge)
since fπ0

∞
is compactly supported on G(R)/AG(R)+ and so, in particular,

compactly supported on Iγ∞(R)\G(R) since AG(R)+ ⊆ Iγ∞(R).

Proposition II.3.3. We follow [Kot92a, §3.1]. Let us first assume that γ∞ is
strongly regular. Note that then that since γ∞ is elliptic strongly regular,
we have that Iγ∞ = I∞. Now we have:

Oγ(fπ0
∞

) =

{
vol(AG(R)0\Iγ∞(R))−1Θπ0

∞
(γ−1
∞ ) if γ∞ elliptic

0 if γ∞ not elliptic
(105)

where θπ0
∞

is the function associated to the Harisha-Chandra character of
π0
∞ by Harish-Chandra’s theorem (for a proof of this formula see [Art93,

Theorem 5.1]). Suppose now that γ∞ is strongly regular elliptic. Then, by
Proposition IV.1.21 we deduce that

SOγ∞(g) :=
∑

[γ′∞]∼s[γ∞]

Oγ′∞(g)

=
∑

w∈WC/WR

Ow·γ∞(g)

=
∑

w∈WC/WR

(−1)dim Shvol(AG(R)0\Iγ∞(R))−1Θπ0
∞

(w · γ−1
∞ ))

(106)
Note that in the first line the lack of the terms a(γ′∞) is due to our as-
sumption that Gder is simply connected, and the lack of the Kottwitz sign
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is because Iγ′∞ , by assumption, is a torus which has trivial Kottwitz sign
(since it is quasi-split).

Let us write π0
∞ := π(ϕ,B0) as in [Kot90, Page 185]. Then, this last

term is equal, by the Harish-Chandra character formula, to∑
w∈WC/WR

(−1)dim Shvol(AG(R)+\Iγ∞(R))−1
∑

w′∈WR

χw′·B0(w·γ−1
∞ )∆w′·B0(w·γ−1

∞ )

(107)
But, this is visibly equal to∑
w∈WC/WR

(−1)dim Shvol(AG(R)0\Iγ∞(R))−1
∑

w′∈WR

χw′·(w·B0)(γ
−1
∞ )∆w′·(w·B0)(γ

−1
∞ )

(108)
which is equal to∑
w′∈WR

∑
w∈WC/WR

(−1)dim Shvol(AG(R)0\Iγ∞(R))−1χw′·(w·B0)(γ
−1
∞ )∆w′·(w·B0)(γ

−1
∞ )

(109)
which, by concatenation, is equal to

(−1)dim Sh
∑

w′′∈WC

vol(AG(R)0\Iγ∞(R))−1χw′′·B(γ−1
∞ )∆w′′·B0(γ−1

∞ ) (110)

But, by the Weyl character formula this is equal to

vol(AG(R)0\Iγ∞(R))−1 tr ξ(γ∞) (111)

as desired.
For the case for general elliptic γ∞ ∈ G(R) (not necessarily strongly

regular) we proceed as follows. Note that by Corollary IV.1.10 γ∞ is con-
tained in some elliptic maximal torus of GR. The result then follows from
the above description and [She83, Lemma 2.9.3].

Note that the Kottwitz sign e(I∞) enters due to the difference in sign
conventions between this article and that of Shelstad (see [She83, Page
2.12]).

With the above, we are now well-positioned to define f∞ and observe its
basic properties. Namely, let us define f∞ as follows:

f∞ :=
(−1)dim Sh

|Π0
∞(ξ)|

∑
π0
∞∈Π∞0

fπ0
∞

(112)

Note that this sum is sensical since Π0
∞(ξ) is a finite set.

Note then that by the definition of pseudo-coefficients we have that for
any π∞ an irreducible tempered representation of G(R) in Π∞(ξ), the fol-
lowing equality holds:

tr(f∞ | π∞) =


(−1)dim Sh

|Π0
∞(ξ)|

if π∞ ∈ Π0
∞(ξ)

0 if otherwise

(113)
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with this trace having the same meaning as the discussion succeeding Defi-
nition II.3.2.

The last thing we record is that there is a certain well-defined integer
a(πf ) associated to any admissible irreducible representation πf of G(Af ).
Namely, let us make the following definition.

Definition II.3.5. Let notation be as above. We then define a(πf ) as fol-
lows:

a(πf ) :=
∑

π∞∈Π∞(ξ)

m(πf ⊗ π∞) tr(f∞ | π∞) (114)

Let us begin by observing the following:

Lemma II.3.6. The equality

a(πf ) =
∑

π∞∈Π∞(ξ)

m(πf ⊗ π∞) tr((−1)dim Shfπ0
∞
| π∞) (115)

holds for any π0
∞ ∈ Π0

∞(ξ).

Proof. Let K be any compact open subgroup of G(Af ) such that πKf 6=
0. Let us then note that the C-space V of automorphic representations
such that $∞ ∈ Π∞(ξ) is an admissible G(Af )-representation by Harish-
Chandra’s theorem (e.g. see [BJ79, Theorem 1.7]). Let us choose any func-
tion h as in Proposition II.3.11 where normalize so that tr(h | πf ) = 1. Note
then that our desired equality is equivalent to∑

π

m(π) tr(hf∞ | π) =
∑
π

m(π) tr(h(−1)dim Shfπ0
∞
| π) (116)

where π travels over automorphic G(Af )-representations with central char-
acter agreeing with that of ξ∨C. But, by Proposition IV.2.16 this is equivalent
to the claim that

τ(G)
∑

{γ}s∈{G}s.s.s

SOγ(hf∞) = τ(G)
∑

{γ}s∈{G}s.s.s

SOγ(h(−1)dim Shfπ0
∞

) (117)

But, note that the left-hand side of this equality is equal, by definition of
f∞, to

|Π0
∞(ξ)|τ(G)

∑
{γ}s∈{G}s.s.s

∑
π∞

SOγ(h(−1)dim Shfπ∞) (118)

Note though that by Proposition IV.2.16 we have that

SOγ(h(−1)dim Shfπ∞) = SOγ(h(−1)dim Shfπ0
∞

) (119)

(because both sides are equal to the expression given in Proposition IV.2.16)
from where the conclusion follows.
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The following proposition will be useful shortly:

Proposition II.3.7. The complex number a(πf ) is an element of Z.

Proof. It suffices to show that if fπ0
∞

is a pseudo-coefficient for an element
π0
∞ ∈ Π0

∞(ξ) then tr(fπ0
∞
| π∞) ∈ Z for every π∞ ∈ Π∞(ξ). Suppose

that π∞ has the same central character as π0
∞. We know that π∞, as an

element of the Grothendieck group of representations of G(R), is a Z-linear
combination of standard representations (e.g. see [ABV12, Lemma 1.20].
We then use the fact (see [CD90, Corollaire Page 213]) that the trace of a
pseudocoefficient for π0

∞ is 0 on all standard representations except π0
∞.

Finally, we record the following alternative description of the integer
a(πf ):

Proposition II.3.8. We have an equality

a(πf ) =
∑

π∞∈Π0
∞

m(πf ⊗ π∞)N−1ep(π∞ ⊗ ξC) (120)

where N = |Π0
∞|·|π0(G(R)/Z(G)(R))| and ep(π∞⊗ξC) is the Euler-Poincare

characteristic of H∗(g,K∞, π∞ ⊗ ξC).

Proof. See [Kot92a, Lemma 3.2] and [Kot92a, Lemma 4.2]. The only as-
sertion thatr used in the proof that requires justifcation is the fact that
K∞/Z(G)(R) is connected in our situation. But, this follows from the ob-
servation that if K ′∞ is a maximal compact subgroup of Gder(R) (which is
connected by [PS92, Theorem 7.6] given our assumption that Gder is simply
connected) then K ′∞ surjects on to K∞/Z(G)(R).

Corollary II.3.9. Let K be a compact open subgroup of G(Af ) such that
πKf 6= 0. Then, H∗(ShK ,Fξ)[πKf ] 6= 0 if and only if a(πf ) 6= 0.

Proof. This follows from [BR94, frm-e.3] as well as [BC+83]. Again, note
that by our assumption that Gad is Q-anisotropic, we know that ShM (G, X)an

C
is proper for all neat M ⊆ G(Af ) (by [Pau04, Lemma 3.1.5]) and so L2-
cohomology agrees with singular cohomology, and thus has a comparison
with étale cohomology by Artin’s comparison theorem.

Finally, we record the following result of Vogan-Zuckerman. Namely:

Proposition II.3.10 ([VZ84]). Suppose that ξ is regular. Then, we have
the equality a(πf ) = (−1)dim Shm(πf ⊗ π0

∞).
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II.3.2 The construction of f∞

To construct f∞ we first start with the following basic observation:

Proposition II.3.11. Let K ⊆ G(Af ) be compact open and let V be an
admissible semisimple Q`[G(Af )]-representation. Then, there exists some
P ∈ H (G(Af ),K) such that the action of P on V is the projector of V
onto V K [(π∞)K ].

Proof. This follows immediately from the general version of the Jacobson
Density Theorem (e.g. as in [Lor07, F20]). Namely, if we decompose

V K =
⊕
i

V ei
i (121)

where Vi are the simple components of H (G(Af ),K) then by loc. cit. we
can find some element P ∈ H (G(Af ),K) such that the image of P in
EndQ`(V ) is the projector of V K onto V K [(π∞)K ]. Noting then that since
P ∈ H (G(Af ),K) we have that P = PeK and noting that eK projects V
onto V K , the conclusion follows.

We can then construct the function f∞ by taking P to be any element
of H (G(Af ),K) from the previous proposition where we take

V :=

2 dim(Sh)⊕
i=1

H i(Sh,Fξ) (122)

To do this, it suffices to show that V is semisimple and admissible. For
the first property note that since Sh→ ShK is a pro-finite Galois cover, the
Leray spectral sequence implies that

V K = H i(Sh,Fξ)K = H i(ShK ,Fξ) (123)

the latter term of which is finite-dimensional by standard algebraic geometry.
For the second property we use the following well-known result:

Theorem II.3.12. For all i > 0 The admissible Q`[G(Af )]-representation
H i(Sh,Fξ) is semisimple.

Proof. It suffices to show, by Artin’s comparison theorem, that for any em-
bedding of E into C that the Q`[G(Af )]-representation

lim−→
K

H i
sing(Shan

K,C,Fan
ξ,K) (124)

is semisimple. This follows at once from [BR94, §2.3] as well as [BC+83].
Note that since Gad is Q-anisotropic that Shan

K,C is compact for all K (see
[Pau04, Lemma 3.1.5]), and thus the L2-cohomology of Shan

K,C agrees with
singular cohomology.
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Let us note that for any f∞ defined as above we can renormalize such
that for π′f any admissible Q`[G(Af )]-representation for which the space

H(ShK ,Fξ)[(π′f )K ] is non-zero then

tr(f∞ | π′f ) =

{
1 if πf ∼= π′f
0 if otherwise

(125)

In the sequel we fix such a function f∞. It is worth noting that we
cannot specify the trace of f∞ on representations whose K-invariants do
not appear in H(ShK ,Fξ). It is also noting that f∞ is not unique. This
non-unicity will be a non-issue for us, and so we have chosen to not notate
the non-unicity of f .

II.4 A geometric trace formula in the case of good
reduction

We recall here the statement of the relevant version of the main formula
from [KSZ] necessary to prove Theorem II.2.1. We keep the assumptions
from §II.2 although the only pivotal assumption for the version of the results
of [KSZ] that we use is the assumption that Gder is simply connected.

Let us fix the notation as in §II.2. We also fix the following extra nota-
tion. Let us fix a prime p ∈ S(G). Fix a finite place p of Eµ lying over p.
Since Eµp/Qp is unramified (by Corollary IV.1.30) we know that Eµp

∼= Qpr

for some r > 1. Fix Kp ⊆ G(Apf ) to be a neat compact open subgroup and
set K := KpK0,p.

Before we proceed let us make the following observation:

Lemma II.4.1. For Kp ⊆ G(Apf ) sufficiently small the group Z(Q)K is
trivial.

Proof. Let us note that since we are assuming that (AG)R = AGR that
for all sufficiently small compact open subgroups K1 of G(Af ) we have that
Z(Q)K1 is trivial (e.g. see [Mil04, Remark 5.27]). Note then that by possibly
shrinking K1, we may assume that K1 = Kp

1Kp with Kp ⊆ K0,p. Since
Kp ⊆ K0,p is of finite index, Z(Q)Kp

1K0,p
is finite. Now, since Z(Q) embeds

diagonally into G(Af ), we can shrink Kp
1 to some Kp such that Z(Q)KpK0,p

is trivial as desired.

Given this lemma we assume, in all future discussion, that K is small
enough so that Z(Q)K is the trivial group.

We continue, as in [KSZ, §5.5], to fix the following extra data/notation:

• Fix j > 1 and set n := rj.

48



• Let t = (γ0, (γ`) 6̀=p, δ) be a (equivalence class of) degree n (punctual)
Kottwitz triple(s) as in [KSZ, Definition 2.7.1] or [Kot90, Page 165].

• For such a Kottwitz triple t = (γ0, (γ`), δ) set I0(t) := Iγ0 and for
each place v of Q set Iv(t) to be the inner form of (I0(t))v as in [KSZ,
§4.7.18] (see also [Kot90, Page 169] and [Kot90, Page 171]).

• Let us denote by I(t) the unique inner form of I0 such that I(t)v ∼= Iv(t)
for all v (e.g. see [KSZ, Proposition 4.7.19] and [Kot90, Page 171]).

• Let α(t) ∈ K(I0/Q)D as in [Kot90, §2] and [KSZ, 4.7.13].

• Set R := ResQpn/QpGEµp
and let θ be the automorphism of R corre-

sponding to the Frobenius element of Gal(Qpn/Qp). Let Rδoθ be as
[KSZ, Definition 1.5.1]. Namely, for a Qp-algebra A we set

Rδoθ(A) = {g ∈ G(A⊗Qp Qpn) : gδσ(g)−1 = δ} (126)

• Let us a fix a Haar measures dgp on G(Apf ) arbitrarily and a Haar
measure dgp on R(Qp) where we require that the mass of R(Zp) is 1.

• Also choose Haar measures on Ip = I(Qp) and I(Apf ). Note that we
have an isomorphism Ip ∼= Rδoθ and for all ` 6= p we also have isomor-
phisms I` ∼= ZG(γ`). Having fixed such isomorphism we can transfer
these Haar measures to Haar measures on Rδoθ(Qp) and Iγ(Apf ).

• Let µ : Gm,Eµp
→ GEµp

be any element of µp.

• Let us denote by φn denote 1R(Zp)µ(p)−1R(Zp).

• We define the twisted orbital integral

TOδ(φn) :=

∫
Rδoθ(Qp)\R(Qp)

φn(g−1δσ(g))dg. (127)

• Define c1(t) := vol(I(Q)ZK\I(Af )).

• Set c2(t) = | ker(ker1(Q, I0)→ ker1(Q,G))|.

• Set c(t) := c1(t)c2(t).

We then state the main result of [KSZ] specialized to our current situa-
tion:

Theorem II.4.2 ([KSZ, Theorem 5.5.2]). For sufficiently small Kp, we
have the following. Let fp ∈H (G(Apf ),Kp). Normalize the action of fpdgp

on H∗(ShK ,Fξ) such that voldgp(K
p)−11Kpdgp = 1. Then the quantity

tr(Φj × 1K0,pf
pdgp | H∗(ShK ,Fξ)) (128)
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is equal to ∑
t=(γ0,γ,δ)
α(γ0,γ,δ)=1

c(t)Oγ(fp)TOδ(φn) tr ξ(γ0) (129)

Proof. In the following we merely justify the simplifications to [KSZ, Theo-
rem 5.5.2] made in the above.

First let us note that since Gad is Q-anisotropic that ShK is proper
(e.g. [Pau04, Lemma 3.1.5] noting that G being Q-anisotropic is equivalent
to G(Q) containing no unipotent elements by [BT72, §8]). This obviously
allows us to replace compactly supported cohomology by normal étale co-
homology.

This observation also allows us to take j = 1 (or m = 1 in the notation
of [KSZ]). Indeed, the proof of [KSZ, Theorem 5.5.2] uses the Fujiwara-
Varshavsky trace formula which requires that j is sufficiently large. But, in
[Var07, Theorem 2.3.2, c)] a bound is given on permissible j that, in partic-
ular, implies that j need only be at least 1 if the integral canonical model
ShK is proper and the Hecke correspondence is étale. The latter is clear (e.g.
see [Kis10, Theorem 2.3.8]). The former follows in the Hodge type case by
work of Madapusi-Pera (e.g. see [Per12, Corollary 4.1.7]) and follows in the
abelian type case by reduction to geometric connected components and us-
ing the fact that such components admit finite surjections from components
of Hodge type Shimura varieties.

Next note that having shrunk Kp sufficiently small we have, by Lemma
II.4.1, that Z(Q)K is trivial. This allows us to ignore the stipulations about
ξ present in [KSZ, §5.5] as well as replace the set (G(Q) ∩G(R)ell)\Z(Q)K
(i.e. ΣZ(Q)K ,R-ell(G) in the notation of [KSZ, §5.5]) with G(Q)∩G(R)ell (i.e.
ΣR-ell in the notation of [KSZ, §5.5]). This is what allows us to combine the
double sum in [KSZ, Theorem 5.5.2] into a single sum of Kottwitz triples.

The absence of the terms ιG(γ0) and ιG(γ0) is explained by the assump-
tion that Gder is simply connected. This assumption also explains the lack
of connected components on our R-groups. Indeed, note that Rδoθ is con-
nected since it’s an inner form of ZG(γ)Qp by [KSZ, Lemma 1.5.3].

The last thing to note is the usage of degree n classical (or punctual in the
language of [KSZ]) Kottwitz triples instead of pn-admissible cohomological
Kottwitz triples as is written in [KSZ, Theorem 5.5.2]. The reason that this
is permissible is that the natural map from such pn-cohomological Kottwitz
triples to degree n classical Kottwitz triples is a bijection (e.g. see [KSZ,
4.7.12]) and the fact that the term O(γ0, α

p, [b]) (as in loc. cit.) associated
to a pn-admissible cohomological Kottwitz triple (γ0, α

p, [b]) is defined in
terms of the associated degree n Kottwitz triple. A similar statement holds
for the Kottwitz invariant α(t).
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II.5 Proof of Theorem II.2.1

We are now prepared to combine the material from the last two subsections,
together with the contents of IV.2, to prove our desired claim.

We first prove the following, analogizing the results in [Kot92a, §5]:

Theorem II.5.1. For all j > 1 and all f = fp1K0,pf∞ where fp is an
element of H (G(Apf ),Kp) and f∞ is as in §II.3 the following equality holds

tr(Φj × (fp1K0,p) | H∗(ShK ,Fξ)) = τK(G)
∑

{γ}s∈{G}s.s.s

SOγ(fpfnf∞) (130)

Here we denote by τK(G) the number

τK(G) := vol(G(Q)\G(A)/ZKAG(R)0) (131)

which is sensical since G(Q)\G(A)/ZKAG(R)0 has finite volume as it is a
quotient of [G]. Also, fn denotes the unramified base change of φn along
GQp → ResQpn/QpGQpn (see the proof of Theorem II.5.1 for details of the
definition).

Before we begin, it’s useful to note the following lemma:

Lemma II.5.2. For any classical degree n Kottwitz triple t = (γ0, γ, δ) we
have that

c(t) = τK(G)vol(AG(R)0\I∞(R))−1 (132)

Here I∞ is as in Lemma II.3.3.

Proof. This is [KSZ, 6.1.1].

Proof. (Proof of Theorem II.5.1) Let us begin by noting that by Theorem
II.4.2 in conjunction with Lemma II.5.2

tr(Φj × (fp1K0,p) | H∗(ShK ,Fξ)) (133)

is equal to

τK(G)
∑

t=(γ0,γ,δ)
α(γ0,γ,δ)=1

vol(AG(R)0\I∞(R))−1Oγ(fp)TOδ(φn) tr ξ(γ0) (134)

Note though that since α(γ0, γ, δ) is a character of K(γ0,G, F ), which is
trivial by our assumption that G has no relevant global endoscopy, we can
rewrite this as

τK(G)
∑

t=(γ0,γ,δ)

vol(AG(R)0\I∞(R))−1Oγ(fp)TOδ(φn) tr ξ(γ0) (135)
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Also, note that since α(t) = α(γ0, γ, δ) = 1 we know by [KSZ, Proposition
4.7.19] that there exists some reductive group I(t) over Q such that we have
isomorphisms I(t)v ∼= Iv(t) for all v 6= p,∞, I(t)p ∼= Rδoθ, and I(t)∞ ∼= I∞
where I∞ is the inner form of (Iγ0)R from Proposition IV.2.16. So then we
know that

e(Iδ)
∏

v 6=p,∞
e(γv)e(I∞) = e(I) = 1 (136)

Thus, we may rewrite this sum as

τK(G)
∑

t=(γ0,γ,δ)

vol(AG(R)0/I∞(R))−1
∏

v 6=p,∞
e(γv)Oγ(fp)e(Iδ)TOδ(φn)e(I∞) tr ξ(γ0)

(137)
Now, by Proposition II.3.3 we know that

tr(ξ(γ0)) = vol(AG(R)+/I∞(R))e(I∞)SOγ0(f∞) (138)

So that our sum becomes(noting that the two copies of e(I∞) cancel):

τK(G)
∑

t=(γ0,γ,δ)

∏
v 6=p,∞

e(γv)Oγ(fp)e(Iδ)TOδ(φn)SOγ0(f∞) (139)

Let us denote by b the base change morphism

H (G(Qpn),Gp(Zpn))→H (G(Qp),K0,p) (140)

as in the introduction [Kot86a]. One then knows that, by [Lab90, prop 3]
(see also [Clo90, thm 1.1]), that∑

δ∈G(Qpn )/∼σ
N(δ)∼ γ0

e(δ)TOδ(φn) = SOγ0(fn) (141)

Thus, we see that we can rewrite our sum as

τK(G)
∑

(γ0,γ)

∏
v 6=p,∞

e(γv)Oγ(fp)SOγ0(fn)SOγ0(f∞) (142)

But, by the definition of a stable orbital integral on Apf , we see that we can
rewrite this as

τK(G)
∑
γ0

SOγ0(fp)SOγ0(fn)SOγ0(f∞) = τK(G)
∑
γ0

SOγ0(fpfnf∞) (143)

Now, note that while γ0 a priori only runs over the elements of G(Q) which
are elliptic in G(R), note that by Proposition II.3.3 we have that SOγ0(f∞)
is zero for γ0 not elliptic in G(R). Thus, we can actually equate this sum to

τK(G)
∑

γ0∈{G}s.s.s

SOγ0(fpfnf∞) (144)

from where the conclusion follows.
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We are now in a position to apply Proposition IV.2.16 to the above to
obtain (keeping the notation of Theorem II.5.1)

tr(Φj × (fp1K0,p)) | H∗(ShK ,Fξ)) = τK(G)/τ(G)
∑

π∈Πχ(G)

m(π) tr(f | π)

= vol(ZK/Z(Q)K)−1
∑

π∈Πχ(G)

m(π) tr(f | π)

= vol(ZK)−1
∑

π∈Πχ(G)

m(π) tr(f | π),

(145)
where f := fpfnf∞ and the last equality follows from the assumption that
K is small enough that Z(Q)K is trivial. Here we are denoted by χ the
restriction to AG(R)0 the of the central character of ξ∨C. Note that, by
construction, f∞ transforms under the center by the central character of ξC
so, in particular, we see that f ∈H (G(A), χ−1).

Let us now begin the proof of the result in earnest. Let us note that
since ShK(G, X) is proper for all neat compact open subgroups K of G(Af )
we know from the proper base change theorem that an inclusion Q ↪→ C
gives rise to an isomorphism

H∗(Sh,Fξ)
≈−→ H∗(ShC,Fξ) (146)

Moreover, by Artin’s comparison theorem we obtain a natural isomorphism
Q`-spaces

H∗(ShC,Fξ)
≈−→ H∗sing(Shan

C ,Fan
ξ ) (147)

where we we imprecisely denoting by H∗sing(Shan
C ,Fan

ξ ) the space

lim−→
K

H∗sing(ShK(G,X)an
C ,Fan

ξ,K) (148)

which is in the Grothendieck group of Q`-spaces.
Note that by Theorem II.3.12 this Q`[G(Af )]-module is semisimple.

Thus, by definition, there exists a decomposition

H∗(Shan
C ,Fan

ξ ) =
⊕
πf

πf � σ(πf ), (149)

where πf ranges over irreducible admissible G(Af )-representations contained
in H∗(Shan

C ,Fan
ξ ) and σ(πf ) is a virtual Q`-space.

Let us note that since the G(Af )-action on the tower Sh is defined Eµ-
rationally that the action of G(Af ) and ΓEµ commute. For this reason, we
see that the induced action of ΓEµ on H∗(Shan

C ,Fan
ξ ) induced from the above

isomorphisms has the property that it preserves σ(πf ), and thus we see that
σ(πf ) is a virtual Q`-representation (recalling our identification of Q` and
C) of WEµ .
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Thus, in conclusion, pulling this decomposition back along the above
isomorphisms we obtain a decomposition

H∗(Sh,Fξ) =
⊕
πf

πf � σ(πf ) (150)

where πf travels over admissible Q`-representations of G(Af ) contained in
H∗(Sh,Fξ) and σ(πf ) is a virtual Q`-representation of ΓEµ .

Remark II.5.3. Note that, a priori, the virtual Q`-representation σ(πf ) of
ΓE depends on the above chosen ambient identifications/data. But, as our
description in Theorem II.2.1 shows, the traces of a dense set of elements of
ΓE are independent of these choices, and thus so is σ(πf ).

We now fix for once and for all an admissible Ql representation π0
f of

G(Af ) satisfying the conditions of Theorem II.2.1. In particular, we assume
there exists an automorphic Ql-representation π of G(A) such that π is
isomorphic to π0

fπ∞ where π∞ ∈ Π∞(ξ).
We now fix a compact open subgroup of G(Af ) satisfying the following

properties.

• We assume that K is a neat subgroup,

• that Z(Q)K = 1,

• and that πKf is nonempty.

We now fix f∞ as in section II.3.2. Finally, we need to determine the
cofinite set S(π0

f ) ⊂ S(G) of theorem II.2.1. We define S(π0
f ) so that for

each p ∈ S(π0
f ),

1. the group GQp is unramified,

2. we have a factorization K = KpK0,p where Kp ⊂ G(Apf ) and K0,p ⊂
G(Qp) is a hyperspecial subgroup,

3. we can factor f∞ = fp1K0,p where fp ∈H (G(Apf )).

We briefly explain why the factorization in the third item can be made for
all but finitely many p. We can write

f∞ =
∑
i

ci1KaiK , (151)
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where ci ∈ C, ai ∈ G(Af ). Now, for all but finitely many places, we have
for all i, (ai)p ∈ Kp. Hence if S is the finite set of primes where this does
not happen, we can write

f∞ = (
∑
i

ci1KS(ai)SKS ) · 1KS , (152)

which gives the desired factorization.
Now fix p ∈ S(π0

f ) and a prime p of Eµ lying over p. Now fix a τ ∈WEµp
.

We aim to describe tr(τ | σ(πf )) as in theorem II.2.1. Note that since
H∗(Sh,Fξ) is unramified at p (by smooth proper base change given the
existence of smooth proper models by combinging [Kis10] and [Per12]) we
may as well assume that τ = Φj for some j where we denote by Φ the
geometric Frobenius element of WEµp

.
On the first hand, let us observe that we have the equality

tr(Φj × f∞ | H∗(Sh,Fξ)) = tr(Φj × f∞ | H∗(ShK(G, X),Fξ,K)

=
∑

πf , π
K
f 6=0

tr(Φj × f∞ | πKf � σ(πf ))

=
∑

πf , π
K
f 6=0

tr(f∞ | πKf ) tr(Φj | σ(πf ))

= tr(Φj | σ(π0
f ))

(153)

where the last equality follows from the definition of f∞.
On the other hand, by Equation (145), we have

tr(Φj × (fp1K0,p)) | H∗(ShK ,Fξ)) = vol(ZK)−1
∑

π∈Πχ(G)

m(π) tr(f | π),

(154)
where f = fpfnf∞.

Now by II.3.5, we can rewrite the right hand side of the above equation
as

vol(ZK)−1
∑

πf∈Πf,χ(G)

a(πf ) tr(fpfn | πf ), (155)

where Πf,χ(G) denotes the set of admissible G(Af )-representations πf such
that there exists a π∞ an admissible G(R)-representation such that πf ⊗π∞
is an element of Πχ(G).

At this point, we note that for any πf , we have the equality

tr(fpfn | πf ) = tr(fp | πpf ) tr(fn | (πf )p) (156)

= tr(fp1K0,p | πf ) tr(fn | (πf )p), (157)

where the last step follows because tr(1K0,p | (πf )p) equals 1 or 0 based on
whether πf

K0,p
p is nonempty or empty and in the latter case, we would also

have tr(fn | (πf )p) = 0.
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Now, by [Kot84a, Theorem 2.1.3], we have

tr(fn | (πf )p) = vol(ZK) tr(τ | r−µ ◦ ϕ(πf )p)p
1
2
j[Eµp:Qp] dim Sh. (158)

Finally, putting all the pieces together and recalling that fp1K0,p = f∞

which projects to the (π0
f )K-isotypic part of H∗(ShK(G, X),Fξ), we get

tr(Φj × f∞ | H∗(ShK(G, X),Fξ)) (159)

is equal to

a(πf ) tr(τ | r−µ ◦ ϕ(πf )p)p
1
2
j[Eµp:Qp] dim Sh (160)

Combining this with Equation (153) proves Theorem II.2.1.
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Part III

The unramified Scholze-Shin
conjecture: the trivial

endoscopic triple
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III.1 Unramified unitary groups and their repre-
sentations

In this section, we construct the various groups and representations that we
use in the proof of our main result.

III.1.1 Local and global unitary groups

To begin, we fix a prime p of Q and a finite unramified extension F/Qp.
We fix an isomorphism ιp : Qp → C. Let E/F be the unique unramified
extension of degree 2 and define UE/F (n)∗ to be the unique up to isomor-
phism quasisplit unitary group of rank n over F for the extension E/F as in
IV.4.15. Define G to be the group ResF/QpUE/F (n)∗. Note that G is unram-
ified since E/Qp is unramified. Note that GQp is isomorphic to a product of
GLn factors. We fix a nontrivial minuscule cocharacter µ of GQp by fixing
a minuscule cocharacter µi of each factor the form

µi(z) =



z
. . .

z
1

. . .

1


, (161)

where the number of z factors and 1 factors in the above expression are ai
and bi respectively. We assume that for at least one i, we have ai /∈ {0, n}.

Note that such a µ is minuscule but that not all minuscule µ are of this
form. Since E is unramified over Qp, it is Galois and hence the reflex field
of µ is a subfield of E which we denote Eµ.

We now note the following:

Lemma III.1.1. There exists an extension of number fields E/F satisfying
the following properties:

1. Eq = E and Fp = F for some primes q of E and p of F such that
q ∩ F = p.

2. F is totally real.

3. E is a quadratic imaginary extension of F.

4. F 6= Q.

Proof. The construction of F follows from [Art13b, Lemma 6.2.1] by taking
any r0 > 1. Indeed, the construction of loc. cit. produces F satisfying the
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desired conditions of 1. and 2. and the existence of more than one real place
on F implies condition 3.

We argue about the existence of E similarly. Indeed, the only assumption
for which the arguments of loc. cit. don’t apply directly to is the assumption
that E/F is imaginary. But, this follows immediately from the method
of loc. cit. since for an embedding of F 2 ↪→ R2 the monic polynomials
with imaginary roots is open since it corresponds to (b, c) ∈ R2 such that
b2 − 4c < 0.

We now define U∗ to be the group UE/F(n)∗ and G∗ to be ResF/QU∗.
The previously defined ιp induces an isomorphism G∗Qp

∼= G∗C. Note that G

is a direct factor of G∗Qp and hence again by ιp, we get that GC is a direct
factor of G∗C. Define a minuscule cocharacter µ of G∗ so that µ restricts to
µ on the GC factor and is trivial elsewhere.

We would now like to record the existence of a certain unitary group
over a global field.

Proposition III.1.2. There exists an inner form U of U∗ and hence an
inner form G := ResF/QU of G∗ such that:

1. The group Gad is F-anisotropic.

2. The group G has no relevant global endoscopy.

3. The group G is a direct factor of GQp.

4. Let {v} denote the infinite places of F. Given any set {(pv, qv)} of
pairs of non-negative integers such that pv + qv = n we have that
Uv ∼= U(pv, qv).

Proof. We shall use the terminology as in Lemma IV.4.25. In particular,
we shall construct U by constructing Uv ∈ InnForm(U∗v) for all places v of
F. Begin by setting Uv := U(pv, qv) for each v | ∞ as in condition 4. of
the proposition. Let us also set Uv0 := U∗v0 where v0 = p is the prime from
Lemma III.1.1. Choose some finite place v′0 of F different than v0 and set
Uv′0

:= D×1
n

. Let us set

ε :=
∑
v|∞

εv(Uv) + εv0(Uv0) + εv′0(Uv′0
) (162)

This is an element of Z/2Z. If ε = 0 let us set Uv := U∗v for all v - ∞
such that v /∈ {v0, v

′
0}. If ε 6= 0 then necessarily n is even. In this case

choose some finite split (relative to E) place v′′0 and set Uv′′0
:= D×n−1

n

and

then set Uv := U∗v for v -∞ such that v /∈ {v0, v
′
0, v
′′
0}. By construction we

have that
∑
v

εv(Uv) = 0 and thus by Lemma IV.4.25 there exists a unique

U ∈ InnForm(U∗) such that UQv
∼= Uv.
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Note that
GQp

∼=
∏
v|p

ResFv/QpUv (163)

and thus by construction we see that GQp contains as a factor ResFv0/QpUv.
But, by construction, Uv

∼= UE/F (n)∗ and Fv0
∼= F and thus condition 3.

is automatically satisfied. Also, evidently condition 4. is satisfied. Thus, it
remains to show that conditions 1. and 2. are satisfied

Now, note that since U is an element of InnForm(UE/F(n∗)) we know by
Lemma IV.4.16 that U ∼= U(∆, ∗) where ∆ is some central simple E-algebra.
Combining Lemma IV.4.19 and Lemma IV.4.27 it suffices to show that ∆
must be a division algebra. To do this, note that by Lemma IV.4.13 one has
an isomorphism UE

∼= ∆×. By 1. of Lemma IV.4.19 it suffices to show that
U(E) contains no non-trivial unipotent elements. But, U(E) ⊆ Uv′0(Ev′0).

Note though that we have an isomorphism (Uv′0)Ev′
0

∼= (D×1
n

)2 and since

(D×1
n

)2 is anisotropic modulo center we see that this contains no non-trivial

unipotent elements as desired.

We now fix global groups U and G satisfying the statement of III.1.2
where we fix the set {(pv, qv)} so that pv = av and qv = bv where we recall
that {(av, bv)} comes from the definition of µ. We get a conjugacy class
of cocharacters of G associated to µ. We denote the reflex field of this
conjugacy class by Eµ. In the present case, E and F are not assumed to
be Galois. Hence it need not be true that F ⊂ Eµ. All we can say is that
Eµ is a subfield of the Galois closure, c(E) of E. Since we have fixed the
isomorphism ιp : Qp → C, we get a cocharacter of GQp which we also call
µ. On the one hand, the reflex field of this µ is given by the completion
of Eµ at the place p over p corresponding to ιp. On the other hand, by
construction, GQp = G × G′ and hence µ = (µ, µ′) where µ is fixed before
and µ′ is trivial. Hence the reflex field of µ in GQp is Eµ. Thus, we have
shown that if p is the place of Eµ determined by ιp, then Eµp = Eµ.

III.1.2 Shimura data for unitary groups

In this section we will write down the general conditions necessary to have
a Shimura datum of the form (G, X) where G = ResF/QU and where F
is some number field, E is a quadratic extension, and U is an inner form
of UE/F (n)∗ for some n. We will then, in particular, verify that we can
find a Shimura datum of abelian type (G, X) where G is as in §III.1.1. See
[RSZ17, §3] for an alternative discussion of the following.

Let us begin by saying that U (or G) is of non-compact type if for some
infinite place v of F we have that UFv is not R-anisotropic. In other words,
G is of compact type if G(R) is compact, and being of non-compact type
just means that it is not of compact type. We then have the following claim:
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Lemma III.1.3. Suppose that E is a CM field and G is of non-compact
type. Then, there is a Shimura datum (G, X) of abelian type.

Proof. So, let us assume that U. Let

h : S→ GR ∼=
∏
i

U(pi, qi) (164)

(where we have a priori fixed this latter isomorphism) be defined in terms
of its projections hi defined as follows. If pi = 0 or qi = 0 we define hi to be
trivial. Otherwise, define hi as follows:

hi(z) :=



z

z̄
. . .

z

z̄
1

. . .

1


(165)

where there are pi entries of
z

z
and qi entries of 1. Set X to be the G(R)-

conjugacy class of h. We claim that (G, X) is a Shimura datum of abelian
type.

The fact that (G, X) is a Shimura datum is elementary and left to the
reader (the assumption that U is of non-compact type being used in Axiom
SV3 of [Mil04]). To see that it’s of abelian type, we must find an associated
Hodge type datum. Let GU denote the associated unitary similitude group
associated to U and set H := ResF/QGU. We then define HQ to be the
fiber product H ×ResF/QGm,F Gm,Q where the map H → ResF/QGm,F is the
similitude character and the map Gm,Q → ResF/QGm,F is the usual inclusion.
We define a morphism

h′ : S→ (HQ)R (166)

as follows. Begin by noting that

(HQ)R =

{
(gi) ∈

∏
i

GU(pi, qi)〉) : c(gi) = c(gj) for all i, j and c(gi) ∈ R×
}

(167)
Let us fix one such isomorphism. We then define h′, via this fixed isomor-
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phism, by its projections h′i to each GU(pi, qi) by

h′i(z) :=



z
. . .

z
z

. . .

z


(168)

where there are pi copies of z, and qi copies of z. One can then check that
(HQ, h′) defines a PEL type Shimura datum (e.g. see [Mil04, Chapter 8]).

Note now that (HQ)der is naturally isomorphic to ResF/QUder which is,

likewise, equal to Gder. Let (HQ)der → Gder be the identity map. It’s not
hard to see then that this induces an isomorphism of Shimura datum between
((HQ)ad, (h′)ad) and (Gad, had). Thus, (G, X) is of abelian type.

We now observe that G as in §III.1.1 is of non-compact type since µ and
hence µ is non-trivial. We can define a Shimura datum (G, X) as in the
previous lemma. In particular, we note that by construction, the conjugacy
class of cocharacters of GC associated to X contains µ as an element.

III.1.3 Local and global representations

We now fix a square integrable irreducible admissible representation π0
p ∈

C[G(Qp)]. We also fix a Shimura datum (G, X) as in the last section, as well
as an algebraic Q`-representation ξ of G with regular highest weight. We
have by assumption GQp = G ×G′. Fix a square integrable representation
π′p of G′(Qp) so that π0

p �π
′
p is a square-integrable representation of G(Qp).

We need the following proposition

Proposition III.1.4. There exists a representation π of G(A) such that πf
appears H∗(Sh(G, X),Fξ) and such that πp ∼= π0

p � π
′
p.

Proof. This is an easy consequence of [Shi12, Theorem 5.7]. We set S to be
the places of Q where G is ramified plus the place p. Then we fix a square
integrable representation πS of G(QS) such that (πS)p = π0

p � π
′
p. We let

Û be the µ̂pl-regular set equal to the orbit O of the unramified unitary
characters of G(QS) acting on πS as in [Shi12, Example 5.6]. We note that
at p, we have that any π′S ∈ Û satisfies (π′S)p = π0

p � π
′
p since G(Qp) has no

split torus in its center. We then apply Theorem 5.7 of Shin’s paper to get
the desired result. Note in particular, that πf appears in H∗(Sh(G, X),Fξ)
since it is ξ-cohomological at ∞.

We now fix a global π satisfying the properties of the above theorem.
Note that since we have assumed ξ has regular highest weight, it follows
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from the remark after Theorem 1 of [Kot92a] that π is discrete and hence
elliptic at infinity.

III.2 Construction of the global Galois represen-
tation

We continue with the notation fixed as in III.1. In this section only, we
use the Galois form of L-groups. We do so because we work primarily with
Galois representations instead of A-parameters.

III.2.1 Unitary shimura varieties

We first define a morphism of L-groups

λ : LG→ LResE/QGLn. (169)

As a group, ̂ResE/QGLn is isomorphic to ∏
ΓQ/ΓE

GLn(C)

o ΓQ. (170)

We fix a subset X ⊂ ΓQ/ΓE such that the map

ΓQ/ΓE → ΓQ/ΓF, (171)

induces a bijection
X
≈−→ ΓQ/ΓF. (172)

We define X⊥ := ΓQ/ΓE \X. We now construct λ by

λ(g1, ..., gm, w) = (g1, ..., gm, JN (g−1
1 )tJ−1

N , ..., JN (g−1
m )tJ−1

N , w), (173)

where the left hand side is an element of

(
∏

ΓQ/ΓF

GLn(C)) o ΓQ = LG, (174)

and the right hand side is an element of

(
∏
X

GLn(C)×
∏
X⊥

GLn(C)) o ΓQ = LResE/QGLn(C). (175)
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III.2.2 The identification of σ(πf )

We continue with notation as in III.1. In particular, (G, X) is an abelian
type Shimura datum, ξ is an irreducible algebraic representation of GC, and
π is an irreducible automorphic representation of G(A) that is ξ-cohomological
at ∞. By IV.3.1, we get an irreducible discrete automorphic representation
BC(π) of GLn(AE) that is conjugate self-dual with infinitesimal character
(ξ⊗ ξ)∨. Note that since ξ is regular, that (ξ⊗ ξ)∨ is slightly regular so that
we can apply [Shi11, Theorem 1.2].

We now apply [Shi11, Theorem 1.2] to get a representation σ(BC(π))
of ΓE with coefficients in Q`. In this section, we identify an explicit rela-
tionship of the Galois representation σ(πf ), as in Theorem II.2.1, and the
representation σ(BC(π)) of GLn(Q`), as in [Shi11, Theorem 1.2].

Now consider the representation

σ := ι`σ(BC(π)) : ΓE → GLn(C). (176)

We identify GLn(C) with ĜLnE ⊂ LGLnE and consider the equivalence

class [σ] up to conjugacy by an element of ĜLnE. Thus, we have [σ] ∈
H1(ΓE , ĜLnE). Now, by a variant of Shapiro’s lemma, [Bor79, Lemma 4.5],

we get a class of H1(ΓQ, ̂ResE/QGLnE). Pick a representative ρ of this class.
Then again by [Bor79, Lemma 4.5], we have that the projection of ρ to the
factor corresponding to the trivial coset of ΓE is a representative of [σ].

We need a few lemmas.

Lemma III.2.1. Let E/F be an unramified extension of p-adic local fields.
Let H be an unramified reductive group over E. Fix a hyperspecial sub-
group K = H(OE) ⊂ H(E) and let π be an irreducible admissible rep-
resentation of H(E) unramified with respect to K. Then since H(E) =
(ResE/FH)(F ), we can also naturally consider π to be an unramified repre-
sentation of (ResE/FH)(F ) with respect to (ResOE/OFH)(OF ). We denote
this representation by π′.

Now, let ψπ = LLE(π) and Iψπ be the equivalence class of parameters of
ResE/FH coming from ψπ by Shapiro’s lemma. Then Iψπ = LLF (π′).

Proof. (Sketch) Let us note that since H is unramified it has an unramified
maximal torus. Indeed, let H be a reductive model for H over OE . Note
that the variety of maximal tori X is smooth over OE (e.g. see [Con14,
Theorem 3.2.6]) we can use Hensel’s lemma to lift a maximal torus of Hk
(where k is the residue field) to a maximal torus of H whose generic fiber is
an unramified torus of H. Note then that by the argument in [BR94, §1.12]
we can then reduce the argument to that of tori. This is then a well-known
result (e.g. see [L+97]).

We now return to the notation before the previous lemma.
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Lemma III.2.2. For each place p of Q such that ResE/QGLn,E and BC(π)
are unramified at p, we have ρ|ΓQp = LLQp(BC(π)p).

Proof. We consider the following diagram

H1(E, ĜLn,E)
∏
p|p

H1(Ep, ĜLn,Ep)

H1(Q, ̂ResE/QGLn,E)
∏
p|p

H1(Qp, ̂ResEp/QpGLn,Ep),

(177)

where the vertical arrows are Shapiro isomorphisms, the top horizontal arrow
is a product of restriction maps to each ΓEp , and the bottom horizontal map
is the composition of the restriction to ΓQp and the isomorphism

H1(Qp, ̂(ResE/QGLn,E)Qp)
∼=
∏
p|p

H1(Qp, ̂ResEp/QpGLn,Ep). (178)

We claim that this diagram commutes. Indeed the vertical maps are just
projections onto the identity coset factors and the horizontal maps are prod-
ucts of restrictions.

But now, we have from [Shi11, Thm 1.2] that σ|Ep = LLEp(BC(π)p).
Then by commutativity of the above diagram and the previous lemma we
get the desired result.

We now take the dominant cocharacter µ of GC ∼=
∏

ΓQ/ΓF

(GLn)C associ-

ated to the Shimura datum (G, X) and write it as a product of cocharacters
(µτ1 , ...,µτm) where τ ranges over ΓQ/ΓF. We then define the cocharacter
(−µ, 0) of

(ResE/QGLn)C = (
∏
X

GLn(C)×
∏
X⊥

GLn(C)) (179)

so that the character is −µ = (−µτ1 , ...−µτm) on the copies of GLn indexed
by X and 0 on the copies of GLn indexed by X⊥. We denote the reflex field
of (µ, 0) by E(µ,0). Then using ιp, we consider (µ, 0) as a cocharacter of
(ResE/QGLn)Qp and observe that the localization of E(µ,0) at the place p
equals E(µ,0) and moreover we have the following observation:

Lemma III.2.3. We have an equality of fields (Eµ)p = (E(µ,0))p.

Proof. Let us note that it suffices to show that the reflex fields of the local
cocharacters µQp and (µQp , 0) agree. To do this let us note that we have a
natural embedding of Q-groups

G ↪→ ResE/QGLn,E (180)
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Upon base changing this to Q we obtain a Galois invariant embedding

GQ ↪→ (ResE/QGLn,E)Q
∼=
∏
X

GLn,Q ×
∏
X⊥

GLn,Q (181)

with notation as above. In particular, we see that we get a natural ΓQp-
equivariant embedding

GQp ↪→
∏
X

GLn,Qp ×
∏
X⊥

GLn,Qp (182)

Note that this map sends µQp to (µQp , JNµQpJ
−1
N ). It is fairly evident

then that the reflex fields of µQp and (µQp , JNµQpJ
−1
N ) are equal. In-

deed, only non-trivial factors of µ correspond to elements of X coming
from ResFv/QpUEw/Fv , and Ew/Qp is Galois and so the only relevant part
of the Galois action on the right hand side of Equation (182) act by the
transposition interchanging X and X⊥ and then by the natural action of
Gal(Fv/Qp). Finally, one sees that (µQp , 0) and (µQp , JNµQpJ

−1
N ) have the

same reflex field since JNµQpJ
−1
N is never conjugate to µ by our assumption

that µ is non-trivial. The conclusion follows.

Let E∗ be the compositum of Eµ and E(µ,0). We have E∗p = Eµ. We
then get a representation

r(−µ,0) : L(ResE/QGLn)|ΓE(µ,0)
→ GLN (C), (183)

as described in the notation at the beginning of the paper. We record the
following lemma.

Lemma III.2.4. Take λ : LG→ LResE/QGLn as in (169). Then we have

have an equality restricted to Ĝ o ΓE∗.

r(−µ,0) ◦ λ = r−µ. (184)

Proof. This follows more or less immediately from the definition of λ.

We then have the following proposition:

Proposition III.2.5. Let q be an element of S(πf ) and q any place of E∗

lying over q. Then, we have an equality

tr
(

Φq | r(−µ,0) ◦ ρ|ΓE∗q

)
= tr(Φq | r−µ ◦ LLQq(πq)|ΓE∗q

). (185)

Before giving the proof of the above proposition, we record the following
corollary, which is the key result of the section.
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Corollary III.2.6. For each q ∈ S(πf ) and each place q of E∗ lying over
q, we have the following equality

a(πf ) tr(Φq|(r(−µ,0) ◦ ρ|ΓE∗q
)⊗ | · |

dim Sh
2 ) = tr(Φq|σ(πf )). (186)

In particular, it follows that we have the following equality in the Grothendieck
group of WE∗-representations

a(πf )[(r(−µ,0) ◦ ρ)⊗ | · |
dim Sh

2 ] = σ(πf ), (187)

and hence by [Shi11, Thm 1.2], for any (not just unramified) prime q of Q
and each place q of E∗ over q, and for τ ∈WE∗q ,

a(πf ) tr(τ |(r(−µ,0) ◦ ρ|ΓWE∗q
)⊗ | · |

dim Sh
2 ) = tr(τ |σ(πf )). (188)

In particular, we will want to apply this corollary to the chosen prime p
and the place p of E∗ coming from ιp.

Proof. (Proposition III.2.5) By III.2.2 and since Φq ∈ ΓQq , we have

tr(Φq | r(−µ,0) ◦ ρ|ΓE∗q
) = tr(Φq | r(−µ,0) ◦ LLQq(BC(π)q)|ΓE∗q

). (189)

Now, by IV.3.1, the above equals

tr(Φq | r(−µ,0) ◦ LLQq(BCq(πq))|ΓE∗q
). (190)

By the compatibility of local base change with the unramified local Lang-
lands correspondence [Mın11, Thm 4.1], we then have

tr(Φq | r(−µ,0) ◦ LLQq(BCq(πq))|ΓE∗q
) = tr(Φq | r(−µ,0) ◦ λ ◦ LLQq(πq)|ΓE∗q

).

(191)
Finally, by III.2.4, we get

tr(Φp | r(−µ,0) ◦ λ ◦ LLQp(πp)|ΓE∗q
) = tr(Φp | r−µ ◦ LLQp(πp)|ΓE∗q

) (192)

III.3 Traces at a place of bad reduction and pseudo-
stabilization

In this section we record an analogue of the trace formula as in §II.4, as well
as the pseudo-stabilization of that formula as in §II.5. In particular, we keep
the notation and assumptions the same as in §II.4 throughout this section
with one exception. Namely, we fix a compact open subgroup Kp ⊆ K0,p

and then set K := KpKp.
The first main result is the following:
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Theorem III.3.1 ([You19, Theorem 4.4.1]). Let h ∈HQ(G(Zp),Kp) and let
τ ∈WEp. Then, there exists a a function φτ,h ∈HQ(G((Ep)j)) (independent
of the choice of `) such that for any fp ∈ HQ`(G(Apf ),Kp) the following
equality holds

tr(τ × fph | H∗(ShK ,Fξ)) =
∑

t=(γ0,γ,δ)
α(γ0,γ,δ)=1

c(t)Oγ(fp)TOδ(φτ,h) tr ξ(γ0) (193)

The proof of the above, or rather the simplifications to the formula made
in [You19, Theorem 4.4.1], are the same as in the proof of Theorem II.4.2.

Let us now fix a function fp ∈HQ(G(Apf ),Kp) with the property fp1Kp
is a projector from H∗(Sh,Fξ) on to H∗(ShK ,Fξ)[(πf )K

p
] and let f∞ be as

in §II.3.1. Let us also set fτ,h ∈ H (G(Qp)) to be a transfer of φτ,h (which
exists by the results of [Wal08]).

We then have the following claim:

Proposition III.3.2. The following equality holds:

tr(τ × fph | H∗(Sh,Fξ)) = τK(G)
∑

{γ}s∈{G}s.s.s

SOγ(fpfτ,hf∞) (194)

Proof. The proof of this result is exactly the same as in the proof of Theorem
II.5.1. The only substantive change is that the proof of the analogue of (141)
is now by the twisted fundamental lemma (as in [Wal08]).

We then deduce that

tr(τ × fph | H∗(ShK ,Fξ)) =
∑

π∈Πχ(G)

m(π) tr(fpfτ,hf∞) (195)

Note then that we can rewrite the right-hand side of this equation as∑
πf∈Πf,χ(G)

a(πf ) tr(fpfτ,h | πf ) =
∑

πf∈Πf,χ(G)

a(πf ) tr(fp1Kp | πf ) tr(fτ,h | πp)

(196)
Note though that by construction a(πf ) tr(fp1Kp) will vanish unless (πf )K

has non-trivial isotypic component in H∗(ShK ,Fξ) and the away-from-p
component of πf agrees with that of πp0,f . Let us call this set S.

From this, we see that our sum reduces to∑
πf∈S

a(πf ) tr(fτ,h | πf,p) (197)

Note though that we have the following reuslt:

Lemma III.3.3. The set S is precisely Πψp(G(Qp), ξp) where ψp is the
A-parameter associated to π0,p.
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Proof. Let us denote by S′ the set of G(Qp)-components of the irreducible
factors of L2

disc(G(Q)\G(A))[πp]. By Matushima’s formula it is clear that
S ⊆ S′. Moreover, by Lemma I.6.3 we know that S′ is precisely Πψp(G(Qp), ω).
Thus, it suffices to show that S = S′.

Equivalently, by Corollary II.3.9, for every πp ∈ S′ we need to show that
a(πp ⊗ πpf ) 6= 0. But, since ξ is regular we see by Theorem II.3.10 that

a(πp ⊗ πpf ) 6= 0 if and only if m(πp ⊗ πp) 6= 0. This is precisely the claim
that S = S′.

From the above, we deduce the following:

Proposition III.3.4.

tr(τ × fph | H∗(Sh,Fξ)) = a(πf )
∑

πp∈Πψp (G(Qp),ξp)

tr(fτ,h | πp) (198)

III.4 The Scholze-Shin conjecture in certain un-
ramified cases

In this section we prove our main result of the paper. Let E/F and G be as
in §III.1.1 and π0

p a square integrable representation of G(Qp) and π0
p�π

′
p an

irreducible square integrable representation of G(Qp) as in §III.1.3. Let ψp
and ψ′p be the Arthur parameters associated to π0

p and π′p respectively as in
[KMSW14, Theorem 1.6.1]. In particular, π0

p�π
′
p has Arthur parameter ψp⊕

ψ′p. Since π0
p and π′p are tempered, ψp and ψ′p are also bounded Langlands

parameters. Let (G, X) be as in §III.1.2 and let µ and µ be as in §III.1.1.
We now prove the following which is a special case of the Scholze-Shin

conjecture [SS13, Conj 7.1].

Theorem III.4.1. Pick any natural number j ≥ 1 and τ ∈ FrobjIEµ ⊂
WEµ. Pick h ∈H (G(Zp)). Then∑
πp∈Πψp (G)

tr(fGτ,h | πp) = tr(τ | r−µ ◦ ψp|WEµ
⊗ | · |

dim Sh
2 )

∑
πp∈Πψp (G)

tr(h | πp).

(199)

Proof. This follows from combining the results of the previous sections. We
choose π as in III.1.3 and fp ∈H (G(Apf )) as in III.3.1 such that fp projects

to the πp isotypic piece of H∗(Sh,Fξ)). Fix any hG ∈H (G(Zp)×G′(Zp)).
Note that τ ∈ Eµ = E∗p as discussed in the paragraph before III.2.4.

On the one hand, by III.3.4, we have

tr(τ × fphG | H∗(Sh,Fξ)) = a(πf )
∑

πp∈Πψp⊕ψ′p
(GQp )

tr(fGτ,hG | πp). (200)
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On the other hand, by II.2.1, we have

tr(τ × fphG | H∗(Sh,Fξ)) = tr(τ × fphG |
⊕
πf

πf � σ(πf )), (201)

and hence by definition of fp as well as the argument in III.3.2 using I.6.3,

tr(τ × fphG | H∗(Sh,Fξ)) = tr(τ × hG |
⊕

πp∈Πψp⊕ψ′p
(G)

πp � σ(πf )). (202)

Now, using III.2.6, the above equals

a(πf ) tr(τ | (r(−µ,0) ◦ ρ|WE∗p
)⊗ | · |

dim Sh
2 )

∑
π′p∈Πψp⊕ψ′p

(GQp )

tr(hG | πp). (203)

Finally, by III.2.2, compatibility of the local Langlands correspondence and
local base change ([Mok15, Theorem 3.2.1 (a)]), and III.2.4, we have that

r(−µ,0) ◦ ρ|WE∗p
∼= r(−µ,0) ◦ ψBC(π)p |WE∗p

∼= r(−µ,0) ◦ λ ◦ (ψp ⊕ ψ′p)|WE∗p

= r−µ ◦ (ψp ⊕ ψ′p)|WE∗p

(204)

Hence the righthand side of the previous equality becomes

a(πf ) tr(τ |(r−µ◦(ψp⊕ψ′p)|WE∗p
)⊗|·|

dim Sh
2 )

∑
πp∈Πψp⊕ψ′p

(GQp )

tr(hG | πp). (205)

Finally, combining the the two equations for tr(τ×fphG | H∗(Sh,Fξ)) gives
that ∑

πp∈Πψp⊕ψ′p
(GQp )

tr(fGτ,hG | πp) (206)

is equal to

tr(τ | (r−µ ◦ (ψp ⊕ ψ′p)|WE∗p
)⊗ | · |

dim Sh
2 )

∑
πp∈Πψp⊕ψ′p

(GQp )

tr(hG | πp). (207)

We now need to translate this equation to one for G instead of GQp . Since
our choice of hG was arbitrary, we pick it so that hG = h × h′ where h′

has trace 1 on a single representation in the packet Πψ′p(G
′) and trace 0 on

the others. We can do this since local A-packets are finite (e.g. see [HG,
Proposition 8.5.2]). Since µ is trivial on G′, we have that fτ,h′ = h′. Indeed,
the triviality of µ′ implies that the space D∞(G′, [b′], µ′) (where µ′ is the
projetion to µ) as in [You19] is the trivial G′(Zp)-torsor for any [b′] as in loc.
cit. In particular, this implies that H∗(D∞(G′, [b′], µ′),Q`) is nothing more
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than C∞c (G′(Zp)). Since the action of τ is through right multiplication by
b′ it’s clear that the trace of τ × h on D∞(G′, [b′], µ′), which is by definition
fτ,h′(b

′), is just h′(b′). Moreover, we have that

fGτ,h×h′ = fGτ,h × fG
′

τ,h′ = fτ,h × h′. (208)

as there is a natural splitting of the space

D∞(G × G′, [(b, b′)]µ) ∼= D∞(G, [b], µ)×D∞(G′[b′], µ′) (209)

which is equivariant for the action of G(Zp)× G′(Zp).
Then, using that Πψp⊕ψ′p(GQp) = Πψp(G)×Πψ′p(G

′), we get∑
πp∈Πψp (G)

tr(fGτ,h | πp) = tr(τ | (r−µ◦(ψp⊕ψ′p)|WE∗p
)⊗|·|

dim Sh
2 )

∑
πp∈Πψp (G)

tr(h | πp).

(210)
Now we denote by µ′, the cocharacter of G′Qp

such that under ιp, (µ, µ′) maps

to µ. By construction µ′ is trivial and hence rµ′ is the trivial representation.
In particular, we get

tr(τ | r−µ ◦ (ψp ⊕ ψ′p)) = tr(τ | (r−µ ◦ ψp)⊗ (r−µ′ ◦ ψ′p)) = tr(τ | r−µ ◦ ψp).
(211)

Making this substitution gives∑
πp∈Πψp (G)

tr(fGτ,h | πp) = tr(τ | (r−µ ◦ψp)|WEµ
⊗| · |

dim Sh
2 )

∑
πp∈Πψp (G)

tr(h | πp),

(212)
as desired.
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IV.1 Appendix 1: Some lemmas about reductive
groups

The goal of this appendix is to collect some loosely related facts about
reductive groups, especially with a focus on reductive groups over R.

IV.1.1 Elliptic elements and tori

In this subsection we clarify the relationship between several notions of
ellipticity for elements of a reductive group.

So, let us fix a field F of characteristic 0 and let G be a reductive group
over F . We begin with the following definition which is unambiguous:

Definition IV.1.1. A torus T in G containing Z(G)◦ is said to be elliptic
if the torus T/Z(G)◦ is F -anisotropic.

It is often times the case that a torus T contains not only Z(G)◦ but
Z(G) (e.g. maximal tori). In this case, one might wonder whether one
obtains a fundamentally different definition by requiring that T/Z(G) is F -
anisotropic. As the following lemma shows, by applying it to the obvious
isogeny T/Z(G)◦ → T/Z(G), the answer is no. For this reason, we will often
times not careful between discussions of the F -anitropicity of T/Z(G) for
T/Z(G)◦ for a torus T containing Z(G)◦ (again, mostly in the case when T
is a maximal torus):

Lemma IV.1.2. Let T1 and T2 be isogenous tori over F . Then, T1 is
F -anisotropic if and only if T2 is.

Proof. Let f : T1 → T2 be an isogeny. Note then that we get an inclu-
sion X∗(T2) ↪→ X∗(T1) with finite cokernel. We and thus an inclusion
X∗(T2)Γ ↪→ X∗(T1)Γ with finite cokernel. Since X∗(Ti)

Γ is free we see that
X∗(T2)Γ is trivial if and only if X∗(T1)Γ is trivial as desired.

The definition of what it means for a semisimple element γ in G(F ) to
be ‘elliptic’ is a little less clear. Namely, we have the following:

Definition IV.1.3. A semisimple element γ in G(F ) is elliptic if Z(ZG(γ))◦

is an elliptic torus. We will say that such an element γ is strongly elliptic
if γ is contained in T (F ) for some elliptic maximal torus T of G.

Note that evidently strongly elliptic implies elliptic. Indeed, if T is an
elliptic maximal torus such that γ ∈ T (F ) then T is a maximal torus in
ZG(γ) and thus ⊆ Z(G)◦Z(ZG(γ))◦ is a subtorus of T . Since T is elliptic
this implies that Z(ZG(γ))◦ is elliptic.

Of course, it can’t be true in general that elliptic implies strongly elliptic
since there are reductive groups which contain no elliptic maximal tori but
which contain elliptic elements.
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Example IV.1.4. For any perfect field F the maximal tori in GLn,F are of the

form
k∏
i=1

ResEi/F Gm,Ei where Ei/F are field extensions and
k∑
i=1

[Ei : F ] = n.

Moreover, one can check that amongst these the elliptic maximal tori are
those of the form ResE/FGm,E where [E : F ] = n. Thus, we see that GLn,F
has an elliptic maximal torus if and only if F admits an extension of degree
n.

In particular, we see that GLn,R admits an elliptic maximal torus if and
only if n = 2. That said, GLn,R has elliptic elements for all n > 1. Indeed,
for any group G the identity element G(F ) is elliptic.

That said, in most of the cases of interest to us the definitions coincide.
For instance, we have the following observation:

Proposition IV.1.5. Let F be a p-adic local field. Then, a semisimple
element γ in G(F ) is elliptic if and only if it’s strongly elliptic.

Lemma IV.1.6. Let F be a p-adic local field and let H be a reductive group
over F . Then, H contains an elliptic maximal torus.

Proof. By [PS92, Theorem 6.21] we know that H/Z(H) contains a maximal
anisotropic torus T . Evidently the preimage of T under the projection map
H → H/Z(H) produces the desired elliptic maximal torus.

Proof. (Proposition IV.1.5) As we’ve already observed, it suffices to show
that if γ ∈ G(F ) is elliptic, then it’s strongly elliptic. That said, note that
H := Iγ contains an elliptic maximal torus T which is evidently a maximal
torus of G since H contains a maximal torus of G and thus has the same
rank as G. By definition, this implies that T/Z(H) is F -anistropic. That
said note that by our assumption the split rank of Z(H) and the split rank
of Z(G) coincides. Thus, T/Z(H) having split rank 0 implies that T/Z(G)
has split rank 0. Since γ is contained in T (F ) the claim follows.

We would like to extend this result to all characteristic 0 local fields and
so, in particular, extend this result to R (note that the only elliptic torus
in a group G over C is Z(G)◦). But, as we observed in Example IV.1.4
such a result fails for trivial reasons over R for general groups. That said,
one can ask whether the notion of elliptic and strongly elliptic do agree for
semisimple elements in G(R) where G is a reductive group over R that does
contain an elliptic maximal torus. The answer is yes.

To see this, we begin with the following well-known result:

Lemma IV.1.7. Let G be a reductive group over R. Then, for every com-
pact subgroup K contained in G(R) there exists an R-anisotropic group H
and a closed embedding H ↪→ G such that H(R) = K.

Proof. This is [Ser93, §5 Proposition 2].

74



One consequence of this is the following:

Lemma IV.1.8. Let G be a reductive group over R. Then, all maximal
anisotropic tori in G are conjugate. Moreover, all maximal elliptic tori in
G are conjugate.

Proof. Let us begin by showing that the former statement implies the latter.
Namely, let T1 and T2 be two maximal elliptic tori in G. Note then that
by standard theory we have a decomposition Ti = T si T

a
i where T si is the

maximal split subtorus of Ti and T ai is the maximal anisotropic subtorus.
Moreover, we have that T si ∩ T ai is finite. Note that by our ellipticity as-
sumptions we have that T si = (Z(G)◦)s for i = 1, 2.

Let us note that T ai are maximal aniostropic tori in G, as we now show.
By symmetry we need only consider the case when i = 1. Now, suppose
that T is an anisotropic torus of G strictly containing T a1 . Then, evidently
TZ(G)◦ is an elliptic torus of G strictly containing T1 which contradicts
assumptions.

So, assuming that all anisotropic tori in G are conjugate there exists
some g ∈ G(R) such that gT a1 g

−1 = T a2 . Note then evidently that since
conjugation by g fixes Z(G) pointwise that

gT1g
−1 = g(T a1 Z(G)◦)g−1 = T a2 Z(G)◦ = T2 (213)

as desired.
Suppose now that T1 and T2 are maximal anisotropic tori in G. Note

then that T1(R) and T2(R) are compact subgroups of G and thus contained
in maximal compact subgroups K1 and K2 of G(R). Now, it is well-known
(e.g. see [Con14, Theorem D.2.8]) that K1 and K2 are conjugate by an
element ofG(R). Thus without loss of generality we may assume the equality
K := K1 = K2. Moreover, by Lemma IV.1.7 we know that K = H(R) for
H some R-anisotropic subgroup of G.

We claim that both T1(R) and T2(R) are maximal tori in K in the sense
of the theory of compact Lie groups (i.e. that they are maximal connected
compact abelian subgroups). Indeed, suppose not. Then there exists a
connected compact abelian subgroup S ⊆ K = H(R) properly containing
T1(R). But, by [Con14, Theorem D.2.4] this implies that there exists some
connected R-anisotropic group Salg ⊆ H such that Salg(R) = S. Note then
that by the Zariski denseness of R-points (e.g. see [Mil17, Theorem 17.9.3])
we have that Salg properly contains T1. But, since S is dense in Salg we
see that Salg is necessarily abelian. Thus, Salg is an anisotropic torus in H
properly containing T1. This contradicts that T1 is a maximal anisotropic
torus in G. By symmetry the claim also applies for T2.

Thus, since T1(R) and T2(R) are maximal tori in K in the sense of the
theory of compact Lie groups we know from the theory of such groups that
T1(R) and T2(R) are conjugate by an element of K. Then, again by density
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of T1(R) in T1, we deduce that T1 is conjugate to T2. More rigorously let
g ∈ K = H(R) conjugate T1(R) to T2(R). Note then that conjugation map
by g sends T1(R) into T2 ⊆ G from which density of T1(R) in T1 implies that
conjugation by g takes T1 into T2. This implies that dimT1 6 dimT2. By
symmetry we deduce that dimT2 6 dimT1. Then, since gT1g

−1 ⊆ T2 and
gT1g

−1 and T2 are both connected and smooth we deduce that gT1g
−1 = T2

as desired.

Two important corollaries of this result are the following:

Corollary IV.1.9. Let G Be a reductive group over R and suppose that G
has an elliptic maximal torus. Then, every maximal elliptic torus in G is
an elliptic maximal torus.

Corollary IV.1.10. Let G be a reductive group over R and suppose that G
has an elliptic maximal torus T0. Then, every elliptic element γ in G(R) is
strongly elliptic.

Proof. Note that, by definition, γ is contained in an elliptic torus T1 of G
(namely T1 = Z(ZG(γ))◦). Note then that T1 is contained in some maximal
elliptic torus T of G. But, by the previous corollary T is a maximal torus
in G. The conclusion follows.

We finally record the following well-known results concerning the exis-
tence of elliptic maximal tori in groups over R. Namely, while it is classical
that every reductive group G over R admits a unique anisotropic form. That
said, the existence of an anisotropic modulo center inner form is not guar-
anteed and is related to the existence of an elliptic maximal torus. Namely:

Lemma IV.1.11. Let G be a connected reductive group over R. Then,
G admits an elliptic maximal torus if and only if G admits an anisotropic
modulo center inner form.

IV.1.2 Local-to-global construction of elliptic maximal tori

In this subsection we would like to verify that if G is a reductive group over
a number field F we can construct maximal tori in G which become elliptic
over some some finite set of places S of F as long as there are no tautological
obstructions (i.e. that G has no elliptic maximal tori at one of the places in
S). More rigorously:

Proposition IV.1.12. Let F be a number field and let G be a connected
reductive group over F . Suppose that S is a finite set of places of F such
that for all v ∈ S the group GFv contains an elliptic maximal torus. Then,
there exists a maximal torus T in G such that TFv is an elliptic maximal
torus in GFv for all v ∈ S.
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To prove this it will be helpful to set up some notation and recall some
classical results concerning the moduli of maximal tori in G. For now, let F
be any field of characteristic 0 and let G be a connected reductive group over
F . To begin, let us define X to be the functor associating to an F -algebra R
the set X(R) of maximal tori in GR (e.g. in the sense of [Con14, Definition
3.2.1]). Then, we have the following result:

Lemma IV.1.13. The functor X is represented by a smooth, irreducible,
and quasi-affine F -scheme (also denoted X). Moreover, for any maximal
torus T0 in G there is a canonical isomorphism G/NG(T0)→ X.

Proof. See [Con14, Theorem 3.2.6] for the first statement minus the smooth-
ness and irreducibility and the second statement. Note that the conditions
that the maximal tori in GF are self-centralizing follows immediately from
the reductive hypotheses on G. The smoothness and irreducibility of X
then follow a fortiori from the second statement given the smoothness and
irreducibility of G.

We shall need the following structural result of Chevalley concerning X:

Theorem IV.1.14 (Chevalley). The scheme X is F -rational.

Now, for any field F ′ containing F let us denote by Xe(F ′) the subset of
X ′(F ) consisting of F ′-elliptic maximal tori in GF ′ . Be careful that, despite
the notation, Xe(F ′) is evidently not functorial in F ′.

We then have the following observation:

Lemma IV.1.15. Suppose that F is a characteristic 0 local field. Then,
Xe(F ) is an open (possibly empty) subset of X(F ) where the latter is en-
dowed with the usual topology F -topology.

Proof. Let us denote by T the universal maximal torus over X. For a point
x ∈ X(F ) we denote by Tx the corresponding torus of G since split rank is an
isogeny invariant (e.g. see Lemma IV.1.2). It then suffices to show that the
isogeny class of Tx is locally constant in x. To do this we proceed as follows.
Let us note that X is rational and smooth, so that T gives rise (by [Con14,
Corollary B.3.6]) to a continuous representation π1(X,x0)→ GLn(Z) (where
n is the rank of T).

Note that this representation must factor through a finite quotient Q
of π1(X,x0). Note that for x ∈ X(F ) the torus Tx clearly corresponds to
the composition ΓF → π1(X,x0) → GLn(Z) which we denote ρx. Note, in
particular that for any x ∈ X(F ) we have that ρx has image bounded by |Q|
and so ΓF factors through a quotient of size |Q|. Since F has only finitely
many extensions of size |Q| we see that there must be some finite extension
F ′/F such that ρx factors through Gal(F ′/F ) for all x ∈ X(F ).

Let us denote, for each x ∈ X(F ), the composition of ρx with the em-
bedding GLn(Z) ↪→ GLn(Q) by ρQx . Then, by the Brauer-Nesbitt theorem

77



we know that ρQx
∼= ρQx′ if and only if χρx(g) = χρx′ (g) for all g ∈ Gal(F ′/F )

where we have used χT to denote the characteristic polynomial for T . But,
since the coefficients of ρx are roots of unity, we know that χρx(g) = χρx(g′)

if and only if they agree modulo N for N sufficiently large. In other words,
we see that if Tx[N ] ∼= Tx′ [N ] then Tx and Tx′ are isogenous.

Let us then pick a point x ∈ X(F ) and consider the finite étale cover
Isom(T[n],Tx0 [N ]) of X. Note then that since the point x0 ∈ X(F ) has a
lift to a point of Isom(T[n],Tx0 [N ])(F ) then by standard theory (e.g. see
[Poo17, Theorem 3.5.73.(i)]) there exists a neighboorhod U of x0 in X(F )
such that Isom(T[N ],Tx0 [N ])(F ) → X(F ) admits a section. By the above,
this implies that Tx is isogenous to Tx0 for all x ∈ U , and so the conclusion
follows.

Using the above results we can now prove Proposition IV.1.12:

Proof. (Proposition IV.1.12) Let us denote by FS the usual F -algebra
∏
v∈S

Fv.

Note then that we have a natural diagonal embedding X(F ) → X(FS).
Moreover, since X is F -rational, smooth, and irreducible we know that the
image of X(F ) in X(FS) is dense (e.g. see [PS92, Proposition 7.3]). Now,
by assumption we have that Xe(Fv) is non-empty for all v ∈ S and thus

combining this with Lemma IV.1.15 we see that
∏
v∈S

Xe(Fv) is a non-empty

open subset ofX(FS). SinceX(F ) is a dense subset ofX(FS) we thus deduce

that X(F ) and
∏
v∈S

X(Fv) must have a point in common. The conclusion

follows.

IV.1.3 Stable conjugacy for strongly regular elements over
R

The goal of this subsection is to clarify the nature of stable conjugacy for
strongly regular elements in G(R) where G is a reductive group over R.

Before we begin, let us fix some notation that will be used below (as well
as the main body of the paper).

Definition IV.1.16. Let T be a maximal torus in G. For any Levi sub-
group M of G containing T we denote by W (M,T ) the Weyl group scheme
NM (T )/T . We will denote by WC(M,T ) the group

WC(M,T ) := NG(T )(C)/T (C) = W (M,T )(C) (214)

We denote by WR(M,T ) the group

WR(M,T ) := NG(T )(R)/T (R) ⊆W (M,T )(R) (215)

where this last containment can be strict in general. When M = G we use
the shortenings WC and WR of the above notation.
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Remark IV.1.17. For the sake of notational comparison, let us note that if T
is an elliptic maximal torus then WR is often written (for example in Harish-
Chandra’s parametrization of discrete series) as Wc and called the compact
Weyl group. The reason is that in this case WR is equal to W (K,T (R))
for any maximal compact subgroups of G(R) containing T (R). The reason
of course, is that NG(T )(R), containing T (R) as a finite index subgroup, is
itself compact and so contained in a maximal compact subgroup of G(R).

We also recall the following well-known definitions:

Definition IV.1.18. Let G be a reductive group over a field F . A semsim-
imple element γ in G(F ) is regular if Iγ is a (necessarily maximal) torus of
G. We say that γ is strongly regular if ZG(γ) is a (necessarily maximal)
torus of G.

Recall that if Gder is simply connected then these two notions coincide.
Indeed, in the case by the following well-known result of Steinberg:

Theorem IV.1.19 (Steinberg). Let G be a reductive group over a field
F and assume that Gder is simply connected. Then, for any semisimple
γ ∈ G(F ) we have that ZG(γ) is connected.

Proof. To show that ZG(γ) is connected it suffices to show that ZG(γ)F is
connected, and so it suffices to assume that F is algebraically closed. Note
that we have a short exact sequence of groups

0→ Gder → G→ Gab → 0 (216)

Note that since G is reductive we have that G = GderZ(G) and so Z(G)
surjects onto Gab. Since ZG(γ) ⊇ Z(G) we deduce that ZG(γ) surjects onto
Gab. Thus, the sequence (216) gives rise to the sequence

0→ Gder ∩ ZG(γ)→ ZG(γ)→ Gab → 0 (217)

Thus, since Gab is connected since G is, it suffices to show that Gder∩ZG(γ)
is connected. Note that since G = GderZG(γ) that there exists some z ∈
Z(G)(F ) such that γz ∈ Gder(F ). Clearly ZG(γ) = ZG(γz) and so it suffices
to assume that γ ∈ Gder(F ). Note then that Gder∩ZG(γ) = ZGder(γ). Thus,
it finally suffices to assume that G = Gder. In this setting one can find a
proof in [Ste06, §5] or [Hum11, §2.11]

It will also be helpful to record the following basic observation:

Theorem IV.1.20 (Steinberg). Let G be a reductive group over a field
F . Then, the set U of regular elements of G is an open subset of F . In
particular, U(F ) is dense in G.
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Proof. The fact that U is open follows from [Ste65, 1.3]. Note then that
since G is unirational (e.g. see [Mil17, Theroem 17.93]) the same is true for
U . Thus, U(F ) is Zariski dense in U . But, since U is open in G and G is
irreducible (e.g. by [Mil17, Summary 1.36]) we know that U is dense in G
so that U(F ) is dense in G as desired.

We now state our target proposition:

Proposition IV.1.21. Let G be a reductive group over R and let T be
a maximal torus in R. Let S be a maximal split subtorus of T and set
M := ZG(S). Let γ ∈ T (R) be strongly regular. Then:

{γ}s =
⋃

w∈WC(M,T )

{wγw−1} =
⋃

w∈WC(M,T )/WR(M,T )

{wγw−1} (218)

An immediate corollary, the case of most interest to us, is the following:

Corollary IV.1.22. Let G be a reductive group over R and suppose that T
is a maximal elliptic torus then

{γ}s =
⋃

w∈WC

{wγw−1} =
⊔

w∈WC/WR

{wγw−1} (219)

Proof. This follows immediately from the proposition since one can take S
to be a maximal split subtorus of Z(G) so that M = G.

Example IV.1.23. Let G = SL2,R. Then, the classic example of two non-

conjugate but stably conjugate elements of SL2(R) is γ =

(
0 −1
1 0

)
and

γ′ =

(
0 1
−1 0

)
. Note though that γ ∈ T (R) where T is the elliptic maximal

torus

T =

{(
a −b
b a

)
: a2 + b2 = 1

}
⊆ SL2,R (220)

Moreover, note that |WC| = 2 with the non-trivial class represented by

w :=

(
i 0
0 −i

)
. Moreover, it’s not hard to check that

Int(w) : T → T (221)

is given by

Int(w) :

(
a −b
b a

)
7→
(
a b
−b a

)
(222)

Thus, the above corollary shows that{(
a −b
b a

)}
s

=

{(
a −b
b a

)}
∪
{(

a b
−b a

)}
(223)
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and thus
{γ}s = {γ} ∪ {γ′} (224)

explaining the above example.

Let us begin by clarifying how {wγw−1} makes sense for w ∈ NM (T )(C)
as an element of {G}. This is settled by the following:

Lemma IV.1.24 ([She79b, Theorem 2.1]). Let notation be as in the begin-
ning previous proposition. Then, the group

{g ∈ G(C) : Int(g) : TC → GC is defined over R} (225)

is equal to the group G(R)NM (T )(C).

In particular, for any γ ∈ T (R) and g ∈ NM (T )(C) we have that the
map Int(g) : TC → TC is defined over R, and thus gγg−1 is an element of
T (R). Thus, {gγg−1} is a well-defined element of {G}.
Remark IV.1.25. Note that, a priori, the conjugacy class {gγg−1} may de-
pend on the choice of γ in {γ}. Thus, the notation w · {γ} doesn’t a priori
make sense for w ∈ WC(M,T ). In fact, the well-definedness of w · {γ} (the
independence of choice representative in {γ} in T (R)) is equivalent to the
normality of WR(M,T ) in WC(M,T ) which needn’t necessarily hold. That
said, the right-hand side of (218) doesn’t depend on a choice of γ.

To begin to prove Proposition IV.1.21 we begin with the following ob-
servation:

Lemma IV.1.26. Suppose that γ ∈ T (R) is strongly regular. Suppose that
γ′ ∈ G(R) is stably conjugate to γ. Then, γ′ is strongly regular and the tori
T ′ := ZG(γ′) and T are stably conjugate (i.e there is a g ∈ G(C) such that
Int(g) : TC → T ′C and the map is defined over R).

Proof. The fact that γ′ is strongly regular is clear since ZG(γ′) and ZG(γ)
are forms of each other, and thus ZG(γ′) is a torus. Now, by assumption,
there is g ∈ G(C) such that gγg−1 = γ′. In particular, for σ ∈ Gal(C/R),

σ(g)γσ(g)−1 = σ(gγg−1)

= σ(γ′)

= γ′

= gγg−1

(226)

Hence, σ(g)−1g = t1 ∈ T (C).
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Now, we need to show Int(g) : T → T ′ is defined over R. In particular,
we need to show that σ ◦ Int(g)◦σ−1 = Int(g). But we have for all t ∈ T (C),

(σ ◦ Int(g) ◦ σ−1)(t) = σ(gσ−1(t)g−1)

= σ(g)tσ(g)−1

= gt−1
1 tt1g

−1

= gtg−1

= Int(g)(t)

(227)

from where the result follows since T and T ′ are separated.

The last preliminary result we need is the following:

Theorem IV.1.27 ([She79a, Cor 2.3]). Let G be a reductive group over
R and let T and T ′ be maximal tori in G. Then, if T and T ′ are stably
conjugate, then they are conjugate.

We now prove the main proposition as follows:

Proof. (Proposition IV.1.21) Evidently

{γ}s ⊇
⋃

w∈WC(M,T )

{wγw−1} (228)

Conversely, suppose that γ′ ∈ G(R) is stably conjugate to γ. Since γ is
strongly regular we know from Lemma IV.1.26 that T and T ′ := ZG(γ′)
are stably conjugate. Thus, by Lemma IV.1.27 we know that T and T ′

are conjugate. Thus, we may assume without loss of generality (without
changing the conjugacy class) that γ′ ∈ T (R). Let g ∈ G(C) be such that
gγg−1 = γ′. Since γ is strongly regular this implies, by Lemma IV.1.26, that
Int(g) maps TC → TC and, in fact, is defined over R. By Lemma IV.1.24 this
implies that g ∈ G(R)NM (T )(C). But, since conjugation by G(R) evidently
doesn’t effect conjugacy classes, we may assume that g ∈ NM (T )(C). The
first part of (218) follows.

Suppose now that w1γw
−1
1 is conjugate to w2γw

−1
2 . Then, there exists

some g ∈ G(R) such that

w2γw
−1
2 = gw1γw

−1
1 g−1 (229)

so that g ∈ NG(T )(R) and w−1
2 gw1 fixes γ. Since γ is strongly regular this

implies that w−1
2 gw1 ∈ T (R) which means that w−1

2 gw1 is the trivial element
of WC. This says that w2 = gw1 as elements of WC. Since g ∈ NG(T )(R)
we see that g ∈WR and the second equality of (218) follows.
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IV.1.4 Reflex fields and a construction of Kottwitz

In this appendix we record, for the ease of the reader, the following extension
of a classicl construction of Kottwitz (see [Kot84a, Lemma 2.1.2]) to the
setting of not necessarily quasi-split groups.

Let us fix a field F and G a reductive group over F . Let µ be a conjugacy
class of cocharacters over F . Recall that ΓF acts on the set of conjugacy
class of cocharacters of GF and we define the reflex field of µ, denoted by
E(µ) (or just E when µ is clear from context), to be the fixed field.

Let G∗ denote the quasi-split inner form of G over F . Choose an inner
twisting f : GF → G∗

F
and let us specify that σ 7→ gσ is the Gad(F )-valued

cocycle such that for all σ ∈ ΓF we have that

f ◦ σG
F
◦ f−1 ◦ σ−1

G∗
F

= Inn(gσ)

We then have the following observation:

Lemma IV.1.28. The reflex field of the G∗(F )-conjugacy class of cochar-
acters

f(µ) := {f ◦ µ : µ ∈ µ}

is E(µ).

Proof. To see this it suffices to show that for any σ in ΓF we have that
σ · (f ◦µ) is conjugate to f ◦µ since, by symmetry, the reverse direction will
also follow. To see this we merely note that for any σ ∈ Γ we have that

σ · (f ◦ µ) = σG∗
F
◦ f ◦ µ ◦ σ−1

G
m,F

= Inn(g−1
σ ) ◦ f ◦ σG

F
◦ µ ◦ σ−1

G
m,Q

= Inn(g−1
σ ) ◦ f ◦ Inn(hσ) ◦ µ)

= Inn(g−1
σ f(hσ)) ◦ f ◦ µ

where we have used the fact that µ is ΓF -stable to obtain the element hσ.

It’s also clear that if we choose another inner twisting (G∗, f ′) of G that
f ′(µ) = f(µ) since for all µ in µ we have that f ◦ µ is conjugate to f ′ ◦ µ
by definition. Thus, we see that this conjugacy class of cocharacters of G∗

F
depends only on G∗ and not on the inner twist (G, f). Thus, we denote this
conjugacy class µ∗. By the above we have that E(µ) = E(µ∗). Also note
that for any µ we have that (−µ)∗ = −µ∗.

Let us now choose a rational Borel-torus pair (B, T ) of G∗ over F . To

µ∗ we associate a Q`-representation rµ of Ĝ∗ oWE(µ∗) where WE(µ)∗ acts

on Ĝ∗ via the pair (B, T ). To do this note that since G∗ is quasi-split we
have that µ is actually defined over E(µ) (see [Kot84a, Lemma 1.1.3]). Let
µ be the unique B-dominant representative of µ∗ defined over E(µ∗). Let
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V (µ) be the irreducible Q`-representation with highest weight µ and then
define

rµ∗ : Ĝ∗ oWE(µ∗) → GL(V (µ))

to be such that its restriction to Ĝ∗ is the usual action and such that the
action of WE(µ∗) on the weight space Vµ ⊆ V (µ) is trivial. The existence of
such a representation is precisely [Kot84a, Lemma 2.1.2].

Note though that there is an isomorphism

Ĝ∗ oWE(µ∗)
∼= ĜoWE(µ) (230)

unique up to inner automorphism. Thus, associated to rµ∗ is a representa-
tion

ĜoWE(µ)
≈−→ Ĝ∗ oWE(µ∗) → GL(V (µ)) (231)

unique up to isomorphism which we denote rµ. Of course, up to isomor-
phism, this representation doesn’t depend on the choice of (B, T ) and, in
particular, depends only on µ not the choice of an element µ ∈ µ. Thus, we
will often times write rµ as a representation ĜoWE(µ) → GL(V (µ)).

We now record some results in the case of F being a global field. To begin
we note thatfor any place v of F and any choice of embedding F ↪→ Fv one
gets an induced conjugacy class µv of cocharacters of GFv . The following
claim is then simple:

Lemma IV.1.29. There is an equality of fields E(µ)w = E(µv).

In particular, we see the following:

Corollary IV.1.30. Let v be an element of Sur(G). Then, E(µ)w/Fv is
unramified.

Proof. Note that by Lemma IV.1.29 it suffices to show that E(µv)/Fv is
unramified. But, since Gv splits over F ur

v we evidently have an inclusion
E(µv) ⊆ F ur

v from where the claim follows.

The following lemma is equally as simple as Lemma IV.1.29:

Lemma IV.1.31. There is an equality (up to isomorphism) of representa-
tions

rµ |ĜoWE(µ)w
= rµv (232)

IV.1.5 The Kottwitz group

We record in this section, for the convenience of the reader, the basic def-
initions and properties we would like to use concerning the Kottwitz group
associated to a local or global field F .

To make sense of the definition of this group, it is useful to first recall
the following basic lemma:
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Lemma IV.1.32. Let F be a field of characteristic 0 and let G be a con-
nected reductive group over F . Let H be any connected reductive subgroup
of G of the same rank. The choice of a maximal torus T in H induces a
natural ΓF -equivariant inclusion Z(Ĝ) ⊆ Z(Ĥ), and this embedding is, in
fact, independent of T .

Remark IV.1.33. See [Bor79, §2] for a recollection of dual groups and their
associated Galois actions.

Proof. (Lemma IV.1.32) Let us first consider the case when H is a maximal
torus defined over F , in which case we will take T to be equal to H. Then,
essentially by definition of the dual group, there exists an embedding Ĥ ↪→ Ĝ
of complex algebraic groups identifying the image of Ĥ with a maximal torus
of Ĝ. In particular, we see that the image of Ĥ contains Z(Ĝ). Let us denote
by Z ′ the preimage of Z(Ĝ) in Ĥ. We then claim that the isomorphism of
complex algebraic groups Z ′ → Z(Ĝ) is actually Γ-equivariant.

To see this, note that induced map of root datum from the morphism
Ĥ ↪→ Ĝ can be identified with the natural inclusion

(X∗(H), 0, X∗(H), 0) ↪→ (X∗(H),Φ∨(G), X∗(H),Φ(G)) (233)

which is patently Γ-equivariant. Thus, we see that for all γ ∈ Γ the action
of γ on Ĥ and the action of γ on the image of Ĥ in Ĝ differ by inner
automorphisms of G. In particular, it follows that the map Z ′ → Ĝ is
Γ-equivariant, and thus is the map Z ′ → Z(Ĝ), as claimed.

The desired Γ-equivariant embedding Z(Ĝ) ↪→ Z(Ĥ) = Ĥ can thus be

taken to be the inverse of the induced Γ-equivariant isomorphism Z ′
≈−→

Z(Ĝ) discussed above.
Suppose now that H is an arbitrary reductive subgroup of G of the

same rank. Let us fix a maximal torus T of H. From the initial case when
H was assumed to be a torus, we see that we obtain separate Γ-equivariant
embeddings Z(Ĝ) ↪→ T̂ and Z(Ĥ) ↪→ T̂ . But, since Z(Ĝ) is clearly contained
in Z(Ĥ) as complex algebraic subgroups of T̂ we thus obtain a Γ-equivariant
embedding Z(Ĝ) ↪→ Z(Ĥ) as desired.

Finally, observe that changing the maximal torus T to T ′ doesn’t affect
the embedding Z(Ĝ) ↪→ Z(Ĥ) since T̂ and T̂ ′ are conjugate in Ĥ and this
conjugation doesn’t alter the embedding Z(Ĝ) ↪→ Z(Ĥ).

Suppose now that F is a number field and G is a reductive group over
F . Assume further that H is a reductive subgroup of G of the same rank.
Clearly then for all places v of F we have that Hv is a reductive subgroup of
Gv of the same rank. Thus, from Lemma IV.1.32 we obtain a ΓF -equivariant
inclusion Z(Ĝ) ↪→ Z(Ĥ) and ΓFv -equivariant inclusions Z(Ĝv) ↪→ Z(Ĥv)
for all places v of F . Given our particular embeddings of F ↪→ Fv we obtain
a diagram
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Z(Ĝv) //

≈

��

Z(Ĥv)

≈

��

Z(Ĝ) // Z(Ĥ)

(234)

where the vertical maps are isomorphisms of complex Lie groups equivariant
for the Γv action where Z(Ĝ) is endowed with the Γv action inherited from
the inclusion Γv ⊆ Γ induced by our choice of embedding F ↪→ Fv.

From the maps Z(Ĝ) → Z(Ĥ) of Γ-modules obtain a short exact se-
quence of Γ-modules

0→ Z(Ĝ)→ Z(Ĥ)→ Z(Ĥ)/Z(Ĝ)→ 0 (235)

Moreover, for each place v of F we obtain from the map Z(Ĝv) → Z(Ĥv)
of ΓFv -modules we obtain a short exact sequences of ΓFv -modules

0→ Z(Ĝv)→ Z(Ĥv)→ Z(Ĥv)/Z(Ĝv)→ 0 (236)

with similar compatibilities as in (234).
We further denote by

inv : Z(Ĥ)/Z(Ĝ)→ H1(Γ, Z(Ĝ)) (237)

and
invv : Z(Ĥv)/Z(Ĝv)→ H1(Γv, Z(Ĝv)) (238)

the connecting homomorphisms associated to (235) and (236) respectively.
Under the aforementioned Γv-equivariant local-global identifications it’s easy
to see that invv can be identified with with the composition of inv and the
localization map H1(Γ, Z(Ĝ))→ H1(Γv, Z(Ĝ).

With this setup, we can define the Kottwitz group as follows:

Definition IV.1.34. Let F be a number field and let G be a reductive group
over F . Let H be a reductive subgroup of G of the same rank. Define the
Kottwitz group K(G,H, F ) as follows:

K(G,H, F ) :=
{
α ∈ (Z(Ĥ)/Z(Ĝ))Γ : inv(α) ∈ ker1(Γ, Z(Ĝ))

}
(239)

If γ ∈ G(F ) is semisimple, we denote by K(Iγ/F ) the group K(G, Iγ , F ).

It will be helpful later to note that our definition of K(G,H, F ) differs
from the definition given in [Kot84b] and [Kot90] where, instead, Kottwitz
uses the group π0(K(G,H, F )) where K(G,H, F ) is given the Hausdorff
topology inheirted from the complex Lie group Z(Ĥ).

The definition we have chosen to use is more in line with the later work
of Kottwitz and other authors (e.g. see [Shi10]). That said, since we would
like to make use of the material in [Kot84b] and [Kot86b] we would like to
verify that our two definitions agree when Gad is F -anisotropic.

Namely, we have the following:
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Lemma IV.1.35. Let F be a number field and G a reductive group over F
such that Gad is F -anisotropic. If H is a connected reductive subgroup of
G of the same rank, then K(G,H, F ) is finite and, in particular, is equal to
π0(K(G,H, F )).

To prove this, it will be helpful to make the following basic observation:

Lemma IV.1.36. Let F be a number field and G a reductive group over F .
Let H be a reductive subgroup of G of the same rank. Let T be a maximal
torus of H. Then, there is a natural inclusion

K(G,H, F ) ↪→ K(G,T, F ) (240)

Proof. Let us merely observe that, by the proof of Lemma IV.1.32, we have
a Γ-equivariant inclusions

Z(Ĝ) ↪→ Z(Ĥ) ↪→ T̂ (241)

which gives rise to a commutative diagram

0 // Z(Ĝ)Γ //

id
��

Z(Ĥ)Γ //
� _

��

(Z(Ĥ)/Z(Ĝ))Γ //
� _

��

H1(Γ, Z(Ĝ))

��

0 // Z(Ĝ)Γ // T̂Γ // (T̂/Z(Ĝ))Γ // H1(Γ, Z(Ĝ))

from where it’s clear that we get the desired inclusion K(G,H, F ) ↪→ K(G,T, F ).

From Lemma IV.1.36 the proof of Lemma IV.1.35 follows immediately
from the following:

Lemma IV.1.37. Let F be a number field and G a reductive group over F .
Let T be a torus in G containing Z(G) which is elliptic. Then (T̂/Z(Ĝ))Γ

is finite.

Proof. Let us begin by showing that for any torus S over F there is a natural
identification of ŜΓ and D(C) where D is the diagonalizable C-group with
character lattice X∗(S)ΓF (the ΓF -coinvariants of X∗(S)).

Now, we write GSc to denote the simply connected cover of Gad. Then
denote by Tad the projection of T to Gad and Tsc the pre-image of Tad

under the surjection Gsc → Gad. Then Tad = T/Z(G) and the projection
Tsc → Tad is an isogeny so that we have a ΓF -equivariant isomorphism

X∗(T
ad)Q ∼= X∗(T

sc)Q. (242)

Taking coinvariants and applying the previous paragraph as well as basic
theory of actions of finite groups on Q-spaces, we get

X∗(T̂sc
ΓF

)Q = X∗(T
sc)Γ ⊗Q ∼= X∗(T

ad)ΓF ⊗Q = X∗(T
ad)ΓF

Q . (243)
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Now, X∗(T
ad)ΓF

Q = 0 since Tad is anisotropic. Then, a diagonalizable group

D is finite if and only if X∗(D)Q is trivial which implies that T̂sc
ΓF

is finite.

But T̂sc
ΓF

= (T̂ad)ΓF = (T̂/Z(Ĝ))ΓF so this is the desired result.

IV.1.6 Preservation of properties under Weil restriction

In this appendix we merely collect the verification that several properties of
algebraic groups used in this note are preserved under Weil restriction:

Lemma IV.1.38. Let F/F ′ be a finite extension. Let H be a reductive
gorup over a field F ′ such that Had is F ′-anisotropic. Then, (ResF/QH)ad

is F -anisotropic.

Proof. The claim is trivial given Lemma IV.4.20 since we have the equality
(ResF/QH)(F ) = H(F ′).

Lemma IV.1.39. Let F ′/F be an extension of number fields. Let H be a
reductive group over F ′ which satisfies the Hasse principle. Then, ResF ′/FH
satisfies the Hasse principle.

Proof. Begin by noting that we have the following commutative diagram

H1(F ′,H) //

(1)

≈

��

∏
w

H1(F ′w,H)

=

��∏
v

∏
w

H1(F′w, H)

(2)

≈

��

H1(F,ResF ′/FH) //
∏
vH

1(Fv,ResF ′/FH)

(244)

The isomorphism in arrow (1) is just Shapiro’s lemma. To see the isomor-
phism in arrow (2) we proceed as follows:

H1(Fv,ResF ′/FH) = H1
ét(Fv, (ResF ′/FH)Fv)

∼= H1
ét(Fv,ResF ′v/FvHF ′v)

∼= H1
ét

Fv,∏
w|v

ResF ′w/FvHF ′w


∼=
∏
w|v

H1
ét(Fv,ResF ′w/FvHF ′w)

∼=
(3)
∏
w|v

H1
ét(F

′
w, HFw)

=
∏
w|v

H1(F ′w,H)

(245)
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where, obviously, the isomorphism labeled (3) is just Shapiro’s lemma.
The commutativity of this diagram, and the fact that the vertical maps

are isomorphisms, gives an isomorphism

ker1(F ′,H) ∼= ker1(F,ResF ′/FH) (246)

from where the conclusion follows.

Lemma IV.1.40. Let F ′/F be an extension of number fields. Let H be a
reductive F ′-group such that Had is F ′-anisotropic, H satisfies the Hasse
principle, and H has no relevant global endoscopy. Then, ResF ′/FH has no
relevant global endoscopy.

Proof. By Proposition I.5.3 it suffices to show that for all maximal F ′-tori
T′ ⊆ ResF ′/FH′ that the equality

Z( ̂ResF ′/FH)ΓF = T̂′
ΓF

(247)

holds. Note though that T′ = ResF ′/FT for some maximal torus T in H
(e.g. see [CGP15, Proposition A.5.15 (2)]). Note now though that since

T̂′ ∼= T̂[F ′:F ] (248)

with ΓF acting through its quotient Gal(F ′/F ) which acts by permutation
of the factors, that

T̂′
ΓF

= T̂ΓF ′ (249)

and similarly

Z( ̂ResF ′/FH)ΓF = Z(Ĥ)ΓF ′ (250)

from where the equality follows from Lemma I.5.3 and the fact that H has
no relevant global endoscopy.

Lemma IV.1.41. Let F ′/F be an extension of fields. Let H be a areductive
group over a field F ′ with Hder simply connected. Then, ResF ′/FH has
simply connected derived subgroup.

Proof. Begin by noting that (ResF ′/FH)der ∼= ResF ′/FH
der. Note though

that we can check derived subgroup over algebraic closure. But

(ResF ′/FH
der)F

∼= (Hder
F

)[F ′:F ] (251)

Since we’re in characteristic zero, the fundamental group splits across direct
products and so

πét
1

(
(Hder

F
)[F ′:F ], x

)
∼= πét

1 ((Hder
F

), x)[F ′:F ] = 0 (252)

as desired.
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IV.1.7 Some lemmas about transfer

In this subsection we establish several results concerning transferability of
conjugacy classes. We begin with the following observation:

Lemma IV.1.42. Let F be a field of characteristic 0 and let G be a quasi-
split group over F . Let ψ : GF → G′

F
be an inner twist. Let T be a torus of

G which transfers to G′ (in the sense of [Kal16, §3.2]) then for any γ ∈ T (F )
the conjugacy class of γ transfers to a conjugacy class in G′(F ) (in the sense
of [Shi10, §2.3]).

Proof. By definition there exists some g ∈ G(F ) such that the map ψ ◦
Int(g)|T

F
: TF → G′

F
is defined over F . Let T ′ be the image of T under

the descent of ψ ◦ Int(g)|T
F

to F . Note then that taking TH := TF and

T := T ′
F

as in [Shi10, §2.3] we have that θ can be taken to be Int(ψ(g)) ◦ ψ.
Then, by definition, γ transfers to a conjugacy class in G′(F ) if and only if
θ(g) ∈ T ′(F ) has an element of its associated G(F )-conjugacy class defined
over F . But, evidently we can take the image of γ under the descent of
ψ ◦ Int(g)|T

F
to F . The conclusion follows.

One thing that follows immediately from this is the following:

Corollary IV.1.43. Let F be a p-adic local field let G be a quasi-split group
over F . Let ψ : GF → G′

F
be an inner twist. Let T be an elliptic maximal

torus of G. Then, any element γ ∈ T (F ) transfers to a conjugacy class in
G′(F ).

Proof. This follows immediately by combining Lemma IV.1.42 and [Kot86b,
§10] (see also [Kal16, Lemma 3.2.1]

IV.2 Appendix 2: The trace formula in the anisotropic
case and its pseudo-stabilization

In this appendix we record, mostly for the convenience of the reader and to
set notation, the Arthur-Selberg trace formula in the compact case or, said
differently, for a reductive group G over Q such that Gad is Q-anisotropic
(which is a blanket assumption throughout this assumption assuming through-
out this section unless stated otherwise). We will often times assume that
Gder is simply connected to simplify the discussion, but this is rarely strictly
necessary.

We then write out the pseudo-stabilization of this trace formula under
the assumption that G has no relevant global elliptic endoscopy (in the sense
of §I.5).
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IV.2.1 The trace formula in the compact case

In this subsection we recall the Arthur-Selberg trace formula in the case
when Gad is Q-anisotropic. For the beginning part of this section, one can
put no restrictions on G other than it being reductive.

We begin with the following lemma that will be continually useful in the
following:

Lemma IV.2.1. Let G be a reductive group over Q. Then, the group G(A)
is an internal direct product of AG(R)0 and G(A)1. In particular the natural
map

[G]→ G(Q)\G(A)/AG(R)0 (253)

is an isomorphism of topological measure spaces.

Before we begin the proof, Let us note that we will often times shorten
the notation for an element G(Q)x in [G] to the notation [x].

Proof. (Lemma IV.2.1) Since AG(R)0 and G(A)1 are normal we need to
show that the equality AG(R)0G(A)1 = G(A) holds and AG(R)0∩G(A)1 is
trivial. This latter fact is clear. The former follows easily from the decompo-
sition G = GderZ(G) which shows that the natural map X∗(G)→ X∗(AG)
is injective with finite cokernel. The second claim readily follows.

Because of this lemma we will conflate [G] with G(Q)\G(A)/AG(R)0

and, in particular, call this latter topological measure space (with the mea-
sure induced from the Haar measure on G(A)) the adelic quotient.

Let us now set up some of the necessary notation. Namely, let us fix a
smooth character χ : AG(R)+ → C and let us make the following definition:

Definition IV.2.2. We denote by L2
χ(G(Q)\G(A)) the space of functions

φ : G(Q)\G(A) → C such that φ(ax) = χ(a)φ(x) for all a ∈ AG(R)0 and
such that φχ−1 is square-integrable on [G].

Note that combining the fact that G(Q)∩AG(R)0 is trivial with Lemma
IV.2.1 we see that every element α ∈ G(Q)\G(A) can be written in the form
α = G(Q)ax with a ∈ AG(R)0 and x ∈ G(A)1 and, moreover, a and G(Q)x
are unique. In particular, the function (φχ−1)(α) := χ−1(a)φ(G(Q)x) makes
sense as a function G(Q)\G(A) → C. Moreover, it’s clear that since φχ−1

is AG(R)0 invariant it descends to a function [G]→ C which we also denote
φχ−1.

Let us now set the following notation:

Definition IV.2.3. We denote by H (G(A), χ−1) the set of C-linear com-
binations of functions f = f∞f

∞ : G(A)→ C where:

1. f∞ : G(Af )→ C is locally constant and compactly supported.
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2. f∞ : G(R) → C is smooth, satisfies f(ax) = χ(a)−1f(x) for all a ∈
AG(R)0, and for which fχ is compactly supported as a function on
G(R)/AG(R)0.

If f ∈ H (G(A), χ−1) note that we get a compactly supported function
fχ : G(A)1 → C defined by (fχ)(ax) := f(x) where a ∈ AG(R)0 and
x ∈ G(A)1 (again using Lemma IV.2.1).

We now make a definition of the operators Rχ(f) and R(fχ) for an
element f ∈H (G(A), χ−1). Namely:

Definition IV.2.4. The right convolution operator Rχ(f) on L2
χ(G(Q)\G(A))

is defined by taking φ ∈ L2
χ(G(Q)\G(A)) to

Rχ(f)(φ)(G(Q)x) :=

∫
G(A)/AG(R)0

f(g)φ(G(Q)xg) dg (254)

which is well-defined since f and φ transform by inverse characters and f
is compactly supported on G(A)/AG(R)+.

We also define the operator R(fχ−1) on L2([G]) as

R(fχ)(ψ)([x]) :=

∫
G(A)1

(fχ)(g)ψ([xg]) dg (255)

We then have the following elementary observation:

Lemma IV.2.5. We have a natural isomorphism of C-spaces

L2
χ(G(Q)\G(A))

≈−→ L2([G]) : φ 7→ φχ−1 (256)

which is equivariant for the natural G(A)1-action on both sides and such
that

Rχ(f)(φ) = R(fχ)(φχ−1) (257)

Proof. We can define an inverse of the above map by pulling back a function
φ ∈ L2(G(Q)\G(A)/AG(R)+) along the quotient map

G(Q)\G(A)→ G(Q)\G(A)/AG(R)0, (258)

and twisting by χ.
Now, we have

Rχ(f)(φ)(G(Q)x) =

∫
G(A)/AG(R)0

f(g)φ(G(Q)xg)dg (259)

=

∫
G(A)1

(fχ)(g)(φχ−1)(xg)dg (260)

= R(fχ)(φχ−1)(x). (261)

from where the lemma follows.
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From this point on we assume that Gad is Q-anisotropic and Gder is
simply connected. This has the benefit of implying that Iγ = ZG(γ) for all
γ ∈ G(Q) and thus a(γ) = 1 for all semi-simple γ ∈ G(Q).

Let us now appeal to the following result which justifies our terminology
of calling the situation when Gad is Q-anisotropic the ‘compact case’:

Theorem IV.2.6 (Borel, Harish-Chandra). Let H be a reductive group over
Q. Then, the space [H] is compact if and only if Had is Q-anisotropic.

Proof. The desired result is contained in [Con12a, §A.5]. Note, in particular,
that since H was assumed reductive that [Con12a, Lemma A.5.2] shows that
conditions a) and b) are equivalent to Had being Q-anisotropic.

Note then that we have the following well-known result:

Theorem IV.2.7. For any function f ∈H (G(A), χ−1) the operator R(fχ)
on L2([G]) is trace class. Moreover, there is a decomposition

L2([G]) =
⊕

π′∈Π(G(A)1)

m(π′)π′ (262)

where Π(G(A)1) denotes the set of irreducible unitary G(A)1-subrepresentations
and m(π′) is some integer (possibly zero).

Proof. This is a classical, and well-known result that follows from easy func-
tion analysis since [G] is compact. For example, see [Whi, §3].

From this we deduce the following:

Corollary IV.2.8. The operator Rχ(f) on the space L2
χ(G(Q)\G(A)) is

trace class and there is a decomposition

L2
χ(G(Q)\G(A)) =

⊕
π∈Πχ(G(A))

m(π)π (263)

where Πχ(G(A)) denotes the set of irreducible unitary G(A)-representations
acting by the character χ on AG(R)+ and m(π) is some integer (possibly
zero).

Proof. The fact that Rχ(f) is trace class follows from the map constructed
in IV.2.5. The decomposition follows from this map as well as the fact that
AG(R)0 is central in G(A), hence extending G(A)1 representations to G(A)
via a character of AG(R)0 does not affect the decomposition into irreducible
representations.

We would now like to state the Arthur-Selberg trace formula in this
context. Before we do this, it’s useful to note the following trivial finiteness
result.
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Lemma IV.2.9. Let H be a reductive group over a global field F and let
C ⊂ H(AF ) a compact subset. Then H(F ) ∩ C is finite.

Proof. This is essentially trivial. It suffices to show that H(F ) ∩ C is dis-
crete and compact. The group H(F ) ⊂ H(AF ) is discrete, therefore so is
H(F ) ∩C. But, H(F ) is also closed in H(AF ) (as any discrete subgroup of
a Hausdorff group is closed) and thus H(F )∩C, being a closed subset of C,
is also compact. The conclusion follows.

From this we deduce the following:

Corollary IV.2.10. Let H be a reductive group over a global field F . Sup-
pose that C ⊆ H(A) is such that its projection to H(A)/AH(R)0 is compact.
Then, C meets finitely many H(F )-conjugacy classes.

Proof. Note that since H(F )-conjugacy classes are separated by the natural
map H(F )→ Had(F ) it suffices to show that the projection of C along the
projection H(A)→ Had(A) intersects only finitely many Had(F ) conjugacy
classes. But, note that C has compact image in Had(A), since the map
H(A)→ Had(A) factors through the map H(A)→ H(A)/AH(R)0, and thus
the claim follows easily from the previous lemma.

Let us now assume that f ∈ H (G(A), χ−1). We then define, as in the
notation at the beginning of this article, the notion of an orbital integral:

Definition IV.2.11. Let γ ∈ G(Q) be given. Then, the orbital integral of
f relative to γ is the following:

Oγ(f) :=

∫
Iγ(A)\G(A)

f(g−1γg) dg (264)

This integral converges because of our assumption that f lies in the set
H (G(A), χ−1) (and, in particular, has compact support modulo AG(R)0).

Let us also note that [Iγ ] is compact since Iγ , being a closed subgroup
of G, also satisfies Iγ/Z(Iγ) is Q-anisotropic. Thus, vγ := vol([Iγ ]), which is
equal (by definition) to τ(Iγ), is finite. Note that both Oγ(f) and vol([Iγ ])
only depend on the conjugacy class {γ} in G(Q).

Definition IV.2.12. For (π, V ) ∈ Πχ(G(A)) and f ∈ H (G(A), χ−1), we
define the trace tr(f |π) to be the trace of the operator π(f) on V given by

π(f) := v 7→
∫
G(A)/AG(R)0

f(g)π(g)vdg. (265)

Let us note that any element of Πχ(G(A)) is admissible (as follows from
Harish-Chandra’s finiteness results as in [BJ79, THeorem 1.7]), and thus
this trace is a well-defined complex number.

Before we finally state the trace formula, we record the following fact
implicitly used in the sequel:
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Lemma IV.2.13. Let H be a reductive group over Q. Suppose that γ is an
elliptic element of H(Q). Then Iγ(A)1 = Iγ(A) ∩H(A)1.

Proof. First note that we really do need the assumption that γ is elliptic as
the example in [AEK05, §4, pg20] indicates.

To prove the lemma, we first show that X∗Q(H)Q = X∗Q(Iγ)Q. Indeed,
we have isogenies

Z(H)→ Hab, Z(Iγ)→ Iab
γ (266)

and hence isomorphisms

X∗Q(Z(H))Q ∼= X∗Q(H)Q, X∗Q(Z(Iγ))Q ∼= X∗Q(Iγ)Q (267)

Additionally, since γ is elliptic, we have

X∗Q(Z(Iγ)) = X∗Q(Z(H)) (268)

Putting these isomorphisms together, gives the desired equality.
Now, we then have

Iγ(A)1 := {h ∈ Iγ(A) : |χ(h)| = 1∀χ ∈ X∗Q(Iγ)Q} (269)

= {h ∈ Iγ(A) : |χ(h)| = 1∀χ ∈ X∗Q(H)Q} (270)

= Iγ(A) ∩H(A)1 (271)

as desired.

We then have the following:

Theorem IV.2.14. Assume that Gad is Q-anisotropic. Then, for any func-
tion f ∈H (G(A), χ−1) we have an equality∑

{γ}∈{G}s.s.
vγOγ(f) = tr(Rχ(f)) (272)

Let us note that by Corollary IV.2.10 the sum on the left-hand side of
(272) is a finite sum, and thus is convergent. The right-hand side of (272)
is convergent since Rχ(f) is trace class by Corollary IV.2.8.

Proof. (Theorem IV.2.14) This follows from the discussion in [AEK05, §1.1].
Namely, from the discussion therein, since [G] is compact we get an equality
of tr(R(fχ)) with∑

{γ}∈{G}s.s.
vol(Iγ(Q)\I(A)1

γ)

∫
I(A)1γ\G(A)1

(fχ)(g−1γg) dg (273)

But, from Lemma IV.2.5 we know that tr(Rχ(f)) = tr(R(fχ)). Moreover,
it’s easy to see that (273) agrees with the left hand side of (272) for fχ in
place of f with the only subtle point being the contents of Lemma IV.2.13.
The conclusion follows.
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Finally, we use Corollary IV.2.8 to deduce:

Corollary IV.2.15. Assume that Gad is Q-anisotropic. Then, for any
f ∈H (G(A), χ−1) we have an equality∑

{γ}∈{G}s.s.
vγOγ(f) =

∑
π∈Πχ(G)

m(π) tr(f | π) (274)

where Πχ(G) and m(π) are as in Corollary IV.2.8.

IV.2.2 Pseudo-stabilization

Our goal is now to rewrite Corollary IV.2.15 in terms of stable orbital inte-
grals. Namely, we aim to prove the following:

Proposition IV.2.16. Suppose that Gad is Q anisotropic and G has no rel-
evant global elliptic endoscopy (in the sense of §I.5). Let f ∈H (G(A), χ−1).
Then,

τ(G)
∑

{γ}∈{G}s.s.
SOγ(f) =

∑
π∈Πχ(G)

m(π) tr(f | π) (275)

where m(π) is as in Corollary IV.2.15.

To prove this, we will manipulate the left hand side of (274) into the left
hand side of (275). We will mainly be following the material in [Kot86b,
§6].

To start, let us first write∑
{γ}∈{G}s.s.

vγOγ(f) =
∑

{γ0}∈{G}s.s.s

∑
{γ}∈S(γ0)

vγOγ(f) (276)

We now have the following

Lemma IV.2.17 ([Kot84b]). Let H and H′ reductive groups over Q which
are inner forms. Then, τ(H) = τ(H′).

Proof. By [Kot84b, (5.1.1)], (since τ(Hsc) = 1 by the resolution of the Tam-
agawa conjecture by Kottwitz in [Kot88]) we have

τ(H) = |π0(Z(Ĥ)Γ| · | ker1(F,Z(Ĥ))|−1. (277)

Since we have a Γ-equivariant isomorphism Ĥ ∼= Ĥ′, this formula immedi-
ately implies the desired result.

Hence, we see that vγ = vγ0 for all {γ} ∈ S(γ0). Thus, the above becomes∑
{γ}∈{G}s.s.

vγOγ(f) =
∑

{γ0}∈{G}s.s.s

vγ0
∑

{γ}∈S(γ0)

Oγ(f) (278)

To continue, we recall the following lemma of Kottwitz (see §IV.1.5 for
notation concerning the Kottwitz group):
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Lemma IV.2.18 (Kottwitz). Let H be a reductive group over a number
field F . Let γ0 ∈ H(F ) be a given semi-simple element. Then, for a given
semi-simple element (γv) = γ ∈ H(A) such that for all places v, we have
γv ∼s γ0v one has that γ ∼ γ′ for some γ′ ∈ H(F ) if and only if the equality
holds ∑

v

obs(γ0, γv) |K(Iγ/F ))= 0 (279)

where both sides are considered as elements of K(Iγ/F ). Moreover, if there
exist such a γ′ then the number of such γ′ (up to H(F )-conjugacy) is the
quantity |K(Iγ/F )|τ(H)v−1

γ0 .

Proof. For the first claim see [Kot86b, Theorem 6.6]. For the second claim
see the discussion succeeding Equation (9.6.3) on page 394 and the discus-
sion preceding (9.6.5) on page 395 noting, again, that the resolution of the
Tamagawa conjecture by Kottwitz in [Kot88] shows that τ1(M) = τ(M) for
any reductive group M over Q.

In particular, we see that since Gad is Q-anisotropic and G has no rele-
vant global endoscopy we see that the following holds:

Corollary IV.2.19. Let γ0 ∈ G(F ) be a given semi-simple element. Then,
for a given semi-simple (γv) = γ ∈ G(A) such that for all places v, we have
γv ∼s γ0v one has that γ ∼ γ′ for some γ′ ∈ G(F ). Moreover, the number
of such γ′ (up to G(F )-conjugacy) is τ(G)v−1

γ0 .

From this we see that we can rewrite (278) as follows:∑
{γ}∈{G}s.s.

vγOγ(f) = τ(G)
∑

{γ0}∈{G}s.s.s

∑
γ∈SA(γ0)

Oγ(f) (280)

where SA(γ0) are the G(A)-conjugacy classes which are stably G(A)-conjugate
to {γ0}. Proposition IV.2.16 then follows considering the term on the right
hand side is almost the definition of the term on the left hand side of (275).
In particular, we see that in this case, e(γ) = 1 because at each place v, we
have γv ∼ γ′ for some γ′ ∈ G(F ), so that e(γ) = e(Iγ′) = 1 from which the
claimed equality holds.

IV.3 Appendix 3: Base change for unitary groups

We record here the version of base change necessary for our purposes. We
are essentially following the results in [Lab09].

For this appendix we fix a CM number field E and let F be its maximal
real subfield. We assume that F ) Q. Let us also fix an integer n > 1
and let U be an inner form of UE/F (n)∗. We then set G := ResF/QU and
H := ResE/QGLn,E . We fix a cofinite set Sunram of primes p of Q over which
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G is unramified, and for each p ∈ Sunram we fix a hyperspecial subgroup
K0,p ⊆ G(Qp).

Next, let us fix an automorphic representation π of U(AF ) = G(A). We
then denote denote by Sram(π) the union of the complement of Sunram and
the finitely many p ∈ Sunram for which πp is ramified relative to K0,p.

For every prime p /∈ Sram(π) let us note that we have an unramified base
change map

BCp :


Irreducible and smooth

K0,p-unramified
representations of G(Qp)

→


Irreducible and smooth
K ′0,p − unramified

representations of H(Qp)


(281)

(where K ′0,p is the unique hyperspecial subgroup of H(Qp)) as in [Mın11,
§2.7] (see also [Mın11, §4.1]).

With this setup, we then have the following result:

Theorem IV.3.1 ([Lab09, Corollaire 5.3]). Fix ξ to be a regular algebraic
representation of GC. Then, there exists a map

BC :


Irreducible discrete

automorphic representations
of UE/F (V )(AF ) such that

π∞ is ξ-cohomological

→


Irreducible discrete
automorphic representations

of GLn(AE)


such that for all primes p /∈ Sram(π) we have that

• BC(π)p = BCp(πp).

• BC(π)∨ ∼= BC(π)◦c (where c is the conjugation operator corresponding
to the non-trivial element of Gal(E/F )).

• The infinitesimal character of BC(π)∞ is (ξ ⊗ ξ)∨.

IV.4 Appendix 4: Unitary groups

In this appendix we recall the basic theory of unitary groups, their local-to-
global construction, and when such groups have no relevant endoscopy as in
§I.5.

IV.4.1 Decomposition of the forms of a split group

Before we begin discussing unitary groups in earnest, it will be helpful to
first recall the decomposition of the forms of a split group G into classes
corresponding to inner and outer forms.

To begin, let F be any field, assumed perfect for convenience, and let G
be a reductive group over F . Recall then the following well-known definition:
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Definition IV.4.1. A form or twist of G is an algebraic group H over F
such that HF is isomorphic to GF . An isomorphism of forms is merely an
isomorphism of algebraic groups over F .

Let us denote by Form(G) the set of (isomorphism classes of) forms of
G. The set Form(G) is a pointed set with identity element the isomorphism
class of G itself.

We recall the cohomological characterization of the pointed set Form(G).
The group functor sending an F -algebra R to the group Aut(GR) of R-
automorphisms of GR is representable by a separated and smooth group
scheme denoted Aut(G) (e.g. see [Con14, Theorem 7.1.9]). Note then that
associated to this group scheme Aut(G) there are two pointed sets. The
étale cohomology set H1

ét(Spec(F ),Aut(G)) (as on [Mil80, Page 122]) and
the Galois cohomology set H1(F,Aut(G)).

We have a natural map of pointed sets

Form(G)→ H1
ét(Spec(F ),Aut(G)) (282)

and a natural map
Form(G)→ H1(F,Aut(G)) (283)

defined as follows. The first map takes a twist H of G to the Aut(G)-torsor
Isom(H,G) (where, here, we have used the identification given by [Mil80,
Proposition 4.6]). The second map is defined as follows. Let H be an element
of Form(G) and let f : GF → HF be an isomorphism. Then, the association

ιf : σ 7→ ιf (σ) := f−1 ◦ σH ◦ f ◦ σ−1
G (284)

defines a map ιf : ΓF → Z1(F,Aut(G)). Differing choices of f or H
(within the same F -isomorphism class) define cohomologous elements of
Z1(F,Aut(G)) and thus we get a well-defined map as in (283).

We then have the following well-known proposition:

Proposition IV.4.2. There is a commuting triangle of isomorphisms of
pointed sets

Form(G) //

��

H1
ét(Spec(F ),Aut(G))

uu

H1(F,Aut(G))

(285)

where the two arrows emanating from Form(G) are (282) and (283), and the
remaining arrow is the one from [Sta18, Tag03QQ].

Proof. The proof of the bijectivity of the maps (282) and (283) follows easily
from the fact that affine morphisms satisfy effective descent (e.g. see [Ser13,
§1.3, Chapter III]). The commutivity of the diagram is easy and left to the
reader.
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We would like to refine the set of forms of G by decomposing it into its
constituents corresponding to whether a form is so-called inner. Namely, we
make the following well-known definition:

Definition IV.4.3. An inner twist of a group G is a pair (H, ξ) where H
is an algebraic group over F and ξ : GF → HF is an isomorphism such that
ιξ(σ) is an inner automorphism of GF (i.e. conjugation by some element of
G(F )) for every σ ∈ ΓF . Two inner twists (H, ξ) and (H ′, ξ′) are equivalent
if there exists an isomorphism φ : H → H ′ such that φF ◦ ξ = Int(h′) ◦ ξ′ for
some h′ ∈ H(F ).

The equivalence classes of inner twists of G form a pointed set denoted
InnTwist(G).

We can also classify inner twists of G cohomologically. To do this, begin
by noting that we have a natural map of algebraic groups Gad → Aut(G).
Indeed, it suffices to give a map G→ Aut(G) which annihilates Z(G). This
map, on R-points, takes an R-point g ∈ G(R) to the the obvious associated
inner automorphism of GR which is an element of Aut(GR) = Aut(G)(R).
From this we obtain a maps of pointed sets

H1
ét(Spec(F ), Gad)→ H1

ét(Spec(F ),Aut(G)) (286)

and
H1(F,Gad)→ H1(F,Aut(G)) (287)

Notice that we also have a natural map

InnTwist(G)→ Form(G) (288)

given by sending (H, ξ) to H.
Note that we also have a map of pointed sets

InnTwist(G)→ H1(F,Gad) (289)

given by associating to (H, ξ) the element ιξ ∈ Z1(F,Gad). Again, one
can check that changing (H, ξ) within its equivalence class corresponds to a
cohomologous cocycle and thus we get a well-defined map as in (289).

We then have the following (also well-known) proposition:

Proposition IV.4.4. The following diagram of maps of pointed sets is com-
mutative with the horizontal arrows being isomorphisms

InnTwist(G) //

��

H1(F,Gad) //

��

H1
ét(Spec(F ), Gad)

��

Form(G) // H1(F,Aut(G)) // H1
ét(Spec(F ),Aut(G))

(290)

where all maps are defined as before this proposition.
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Now, the map InnTwist(G) → Form(G) needn’t be injective, and we
denote by InnForm(G) its image and call such forms (in the image) inner
forms of G. Evidently InnForm(G) can be a proper subset of Form(G). But,
while not every form of G is an inner form, there is a partition of the forms
of G in to groupings of the inner forms of certain special forms of G. We
now elaborate on this point. While it is not strictly necessary, we assume
from this point out that G is split. To this end, we also fix a pair (B, T )
consisting of a Borel subgroup B and a split maximal subtorus T of B. We
denote the triple (G,B, T ) by P.

Begin by recalling that a reductive group H over F is quasi-split if it
possesses an F -rational Borel subgroup (i.e. a subgroup B of H such that
BF is a maximal smooth connected solvable subgroup of HF ). We denote
the set of (isomorphism classes of) quasi-split forms of G by QS(G) and
thus, by definition, we have an inclusion QS(G) ⊆ Form(G). These quasi-
split forms of G are the previously alluded to ‘special forms’ for which every
form of G will be an inner form of.

Before we state the decomposition of Form(G) in terms of these quasi-
split forms, we explain how to cohomologically classify the subset QS(G) of
Form(G). To begin, note that the inclusion of Gad into Aut(G) has normal
image and thus we can form the quotient group scheme which we denote
Out(G). This group scheme is constant, and is finite whenever Z(G) has
rank at most 1 (e.g. see [Con14, Proposition 7.1.9]). Note that by definition
we have the defining short exact sequence

1→ Gad → Aut(G)→ Out(G)→ 1 (291)

which gives rise to the diagram

Out(G)(F ) // H1(F,Gad) //

��

H1(F,Aut(G))
cl //

��

H1(F,Out(G))

InnTwist(G) Form(G)

(292)
where the verital maps are bijections and the horizontal maps form an exact
sequence of pointed sets. Moreover, we have an idenficiation

H1(F,Out(G)) = Homcont.(ΓF ,Out(G)(F ))/ ∼ (293)

where ∼ denotes conjugation by Out(G)(F ). One also has a natural iden-
tification of Out(G)(F ) with the group of automorphisms of the based root
datum associated to (G,B, T ) (e.g. see [Con14, §1.5] as well as [Con14,
Theorem 7.1.9]).

Let us denote by Aut(P) the subpresheaf of Aut(G) consisting of those
automorphisms preserving P (i.e. preserving B and T ). Note then that we
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get a natural map

H1(F,Aut(P))→ H1(F,Aut(G)) (294)

coming from this inclusion.
We then have the following cohomological classification of QS(G):

Proposition IV.4.5. The natural map

H1(F,Aut(P))→ H1(F,Aut(G)) (295)

is injective with image QS(G). Moreover, the natural map

QS(G)→ H1(F,Out(G)) (296)

is a bijection. Thus, we have natural bijections

H1(F,Aut(P))
≈−→ QS(G)

≈−→ H1(F,Out(G)) (297)

Proof. Let us begin by showing that the image of the map in (295) is pre-
cisely QS(G). To do this, let ι is a cocycle of Aut(G)(F ) with corresponding
form H. Suppose now that ι lies in the image of H1(F,Aut(P). Then, ι
also gives rise (by restriction) to a cocycle in H1(F,Aut(B)) and thus, by
definition, B descends to a form B′ of B over F . Since we obtained the
cocycle of H1(F,Aut(B)) by restriction of a cocycle in H1(F,Aut(G)) we
see that we have an embedding B′ ↪→ H. It’s not hard then to see that the
image of this B′ is a Borel subgroup of H, and thus H is quasi-split.

Suppose now that H ∈ QS(G) and fix a pair (B′, T ′) of an F -rational
Borel subgroup of H and a maximal torus T ′ contained in B′. Select an
isomorphism f : GF → HF . Note that by standard algebraic group theory
the pair (f−1(B′

F
), f−1(T ′

F
)) must be conjugate to the pair (BF , TF ) by

some element g ∈ G(F ). Note that H corresponds to the cocycle ιf in
H1(F,Aut(G)). Note then that ιf is cohomologous to the cocycle ι′ : σ 7→
gιf (σ)σ(g)−1. But, note that ι′ (by construction) lands in the image of
H1(F,Aut(P)) as desired.

If we can show that the map H1(F,Aut(P)) → H1(F,Out(G)) is an
isomorphism then, since the diagram

H1(F,Aut(P)) //

��

QS(G)

ww

H1(F,Out(G))

(298)

commutes the injectivity of H1(F,Aut(P)) and the bijectivity of the map
QS(G)→ H1(F,Out(G)) will follow. Thus, we focus on this.

Let us note that the map Aut(P) → Out(G) is split (by any pin-
ning of the triple (G,B, T )) and thus so is the map H1(F,Aut(P)) →
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H1(F,Out(G)). This shows that the map H1(F,Aut(P))→ H1(F,Out(G))
is surjective. To show the map is injective note that we have a short exact
sequence of group schemes

1→ T/Z(G)→ Aut(P)→ Out(G)→ 1 (299)

and thus (by the twisting trick of [Ser13, I, §5.7]) it sufifices to show that
for all Out(G)(F )-valued cocycles a one has that H1(F, (T/Z(G))a) = 0.
But, since T is split and the action of a on X∗(T/Z(G)) is by permutation
of roots, we see that (T/Z(G))a is an induced torus, and thus the vanishing
follows from Shapiro’s lemma and Hilbert’s theorem 90.

As a final observation, we give a decomposition of Form(G) into inner
forms of the quasi-split forms of G. Namely, we have the following:

Proposition IV.4.6. There is a decomposition

Form(G) =
⊔

H0∈QS(G)

InnForm(H0) (300)

Proof. Let us note that we have the exact sequence

1→ Gad → Aut(G)→ Out(G)→ 1 (301)

which gives rise to the exact sequence

H1(F,Gad)→ H1(F,Aut(G))
p−→ H1(F,Out(G)) (302)

Then, clearly, we have a decomposition

H1(F,Aut(G)) =
⊔

a∈H1(F,Aut(G)

p−1(a) (303)

But, by the contents of [Ser13, I, §5.5] we know that p−1(a) is identified of
a quotient of H1(F,Gad

a ). But, it’s not hard to see that if a corresponds
to H ∈ QS(G) by Proposition IV.4.5 then Gad

a = Had, and the conclusion
follows.

The above decomposition gives us a map Form(G) → QS(G). For an
element H of Form(G) we denote by H∗, an element of QS(G), the image
of H under this map. For a split group G over F we call an element H of
Form(G) an outer form if H∗ 6= G. Equivalently, H is an outer form if its
image in H1(F,Out(G)) is non-trivial.

The last useful lemma we record is the following, which is easy (it follows
from the proof of Proposition IV.4.6) and is left to the reader:

Lemma IV.4.7. Let H be an element of Form(G) and H0 an element of
QS(G). Then, H∗ = H0 if and only if cl(H) = cl(H0).
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IV.4.2 Unitary groups: basic definitions and properties

We now specialize and elaborate the discussion from the previous subsection
in the case when G = GLn,F . In particular, we recall the theory of unitary
groups over F by which we mean forms of GLn,F . For simplicity we assume
that F has characteristic 0.

To begin, let us fix the pair (B, T ) in the case of GLn,F to be the stan-
dard Borel Bn of upper triangular matrices, and the standard torus Tn of
diagonal matrices. It is then not hard to check that the automorphisms
of the associated based root datum are isomorphic to Z/2Z. From this we
deduce that we have natural bijections

H1(F,Out(GLn,F )) ∼= Homcont.(ΓF ,Z/2Z)
∼= {étale algebras of degree 2 over F}

(304)

which are identifications we freely make. Here an étale algebra of degree 2
over F means either F × F , the split étale algebra, or a degree 2 extension
E over F .

Before we continue, it will be helpful to clarify some notation concerning
central simple algebras (or their generalizations Azumaya algebras) and their
involutions. We begin by recalling the following definition.

Definition IV.4.8. Let R be a (commutative unital) ring. Then an Azu-
maya algebra over R is a (possibly non-commutative) unital R-algebra A
such that there exists some faithfully flat (commutative unital) R-algebra R′

such that AR′ is isomorphic to Matn(R′) as an R′-algebra.

We will only be interested in dealing with Azumaya algebras over degree
2 étale algebras over F , in which case such objects take a particularly simple
form.

Namely, we have the following easy lemma:

Lemma IV.4.9. Let R be a (commutative unital) ring.

1. If R → S is a ring map, and A is an Azumaya algebra over R, then
AS is an Azumaya algebra over S.

2. If R is a field, then an R-algebra A is an Azumaya algebra if and only
if it’s a central simple R-algebra.

3. If R = F ×F , where F is a field, then an R-algebra A is an Azumaya
algebra if and only if A ∼= ∆1×∆2 where ∆1 and ∆2 are central simple
F -algebras.

Azumaya algebras can support involutions of particular interest to us,
ones of the so-called second kind. We record here the rigourous definition:
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Definition IV.4.10. Let F be a field of characteristic 0 and E a degree
2 étale algebra over F and let us write σ for the non-trivial element of
Gal(E/F ). If A is an Azumaya algebra over E, then an involution of the
second kind is a morphism A→ A, denoted x 7→ x∗, satisfying the following
properties:

1. (x+ y)∗ = x∗ + y∗ for all x, y ∈ A.

2. (xy)∗ = y∗x∗ for all x, y ∈ A.

3. x∗ = σ(x) for all x ∈ E.

We shall often write (A, ∗) for a pair of an Azumaya algebra and an
involusion of the second kind. To such a pair (A, ∗) we can associate a
unitary group:

Definition IV.4.11. Let F be a field of characteristic 0 and E a 2-dimensional
étale algebra over F . Then, for a pair (A, ∗) of an an Azumaya algebra A
over E and ∗ is an involution of the second kind we define the unitary group
of (A, ∗), denoted U(A, ∗), to be the algebraic F -group whose R-points are
given by

U(A, ∗)(R) := {x ∈ AR : xx∗ = 1} (305)

Let us now make the following elementary observation

Lemma IV.4.12. Let F be a field of characteristic 0 and E = F×F . Then,
up to isomorphism, the only Azumaya algebras over E with an involution of
the second kind are those of the form (∆×∆op, ∗switch) where ∆ is a central
simple F -algebra and

∗switch (x, y) = (y, x) (306)

Moreover,
U(∆×∆, ∗switch) ∼= ∆× (307)

as algebraic groups over F .

Proof. The first claim is [KMRT98, Proposition 2.14]. The second claim is
then clear.

From this, we immediately deduce the following:

Lemma IV.4.13. Let F be a field of characteristic 0 and let E be a degree
2 extension of F . Let (∆, ∗) be a central simple E-algebra and let U(∆, ∗)
be its associated unitary group. Then, U(∆, ∗)E ∼= ∆×.

Proof. It’s not hard to see that

U(∆, ∗)E ∼= U(∆E , ∗E) (308)
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where ∆E is now an Azumaya algebra over E ⊗F E = E × E. By the
previous lemma we know that

(∆E , ∗E) ∼= (∆′ ×∆′, ∗switch) (309)

for some central simple E-algebra ∆′. Since ∆ naturally embeds into ∆E

it’s not hard to see that ∆′ ∼= ∆ and thus U(∆, ∗)E ∼= ∆× from the previous
lemma.

The last definition we require before returning to our analysis of the
forms of GLn,F is the follwing:

Definition IV.4.14. Let F be a field of characteristic 0 and E a 2-dimensional
étale algebra over F . A Hermitian space relative to E/F is a pair (V, 〈−,−〉)
consisting of a free E-module V together a non-degenerate F -linear pairing

〈−,−〉 : V × V → E (310)

such that 〈−,−〉 is E-linear in the first entry and satisfies

〈v, w〉 = σ(〈w, v〉) (311)

where σ is the non-trivial element of Gal(E/F ).
For a Hermitian space (V, 〈−,−〉) we define U(V, 〈−,−〉) to be the alge-

braic F -group so that on F -algebras R we have the following:

U(V, 〈−,−〉)(R) := {g ∈ GLR(VR) : 〈gv, gw〉 = 〈v, w〉 for all v, w ∈ VE}
(312)

Now, combining (304) with Proposition IV.4.5 we see that we have a
bijection

QS(GLn) ∼= {étale algebras of degree 2 over F} (313)

For an étale algebra E over F of degree 2 let us denote by UE/F (n)∗ the
element of QS(GLn) corresponding to E. We then have the following de-
scription of U∗E/F (n) which is well-known, and whose proof is elementary
and left to the reader:

Lemma IV.4.15. Let E be an etale algebra of degree 2 over F . If E is
split then UE/F (n)∗ ∼= GLn. If E is a degree 2 extension of F then there is
an isomorphism

UE/F (n)∗ ∼= U(En, 〈−,−〉0) (314)

where
〈x, y〉0 := x>JNy (315)
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where

JN =



0 · · · 0 0 1
0 · · · 0 −1 0
0 · · · 1 0 0
... . .

.
. .
.

0 0

0 · · ·
... 0 0

(−1)N−1 0 · · · 0 0


(316)

Thus, combining this lemma with Proposition IV.4.6 we deduce that

Form(GLn,F ) =
⊔
E

InnForm(UE/F (n)∗) (317)

and, in particular, the outer forms of GLn are precisely the inner forms of
some UE/F (n)∗ where E is a degree 2 extension of F .

The last thing we would like to do is explicate the structure of the pointed
set InnForm(UE/F (n)∗). Namely, we would like to claim the following:

Lemma IV.4.16. The elements of InnForm(UE/F (n)∗) are precisely U(A, ∗)
where A is an Azumaya algebra over E of F -dimension 2n2 over F .

Proof. Let us first note that the fact that every form of GLn,F is of the form
U(A, ∗) for some Azumaya algebra over a degree 2 etale algebra over F is
classical (e.g. see [PR94, §2.3.4]). The fact that InnForm(GLn,F ) is just ∆×

for a central simple algebra over F is also well-known (see loc. cit.).
Let us now deal with the non-split case. Let us note that by Lemma

IV.4.7 that an element H = U(A, ∗) of Form(GLn,F ) is in InnForm(UE/F (n)∗)
if and only if cl(H) = cl(UE/F (n)∗) = E. Moreover, by functoriality we
know that cl(HE) = cl(H)E and since E is the unique non-trivial element
of H1(F,Z/2Z) with trivial image in H1(E,Z/2Z). Thus, we see that H is
in InnForm(UE/F (n)∗) if and only if cl(HE) is trivial. But, this is equivalent
to saying that HE is in InnForm(GLn,F ) which, by the previous paragraph,
shows that HE

∼= ∆× for some central simple algebra ∆ over E. Note then
that this implies that Z(H)E is split. But, if A is an Azumaya algebra over
E′ then one can easily show compute that Z(H) is the unique 1-dimensional
torus over F split over E′. Thus, E = E′ as desired.

We end this section with the well-known classification of unitary groups
over local fields. We begin with the classification over R:

Lemma IV.4.17. There is a natural decomposition

Form(GLn,R) = InnForm(GLn,R) t InnForm(UC/R(n)∗) (318)

Moreover, we have that

InnForm(GLn,R) =

{
{GLn,R} if n odd

{GLn,R,GLn
2
(H)} if n even

(319)
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where H is the Hamiltonian quaternions and

InnForm(UC/R(n)∗) = {U(p, q) : 0 6 p 6 q 6 n and p+ q = n} (320)

where U(p, q) = U(Rn, 〈−,−〉(p,q) where

〈(x1, . . . , xn), (y1, . . . , yn)〉(p,q) := x1y1 + · · ·+ xpyp − xp+1yp+1 − · · · − xnyn
(321)

Proof. The claim concerning the inner forms of GLn,R follows immediately
from the observation that H1(R,PGLn) injects in to Br(R)[2n] and since
Br(R) = Z/2Z the claim follows quite easily.

The second claim follows from a computation of H1(R, (UC/R(n)∗)ad).
Let us note that U(n) := U(0, n) is an inner form of UC/R(n), since it’s

not an inner form of GLn,R, and thus it suffices to compute H1(R, U(n)ad).
Note though that by [Bor14, Theorem 9] this is equal to H1(R, T )/WT (R)
where T is a fundamental torus (i.e. a maximal torus of minimal split
rank) in U(n)ad. But, U(n)ad is R-anisotropic so we can take T to be any
maximal torus, namely T = U(1)n/Z(U(n)) (where U(1) is the unique non-
split torus over R). But, as can be easily calculated H1(R, U(1)) = Z/2Z
and thusH1(R, T ) = ((Z/2Z)n/(Z/2Z)) where Z/2Z is embedded diagonally
in (Z/2Z)n. But, as can be easily checked (and as holds for any elliptic
maximal torus in an R-group), the group scheme WT is constant. Thus,
WT (R) = WT (C) = Sn. It’s easy to check that the Sn action on H1(R, T )
is the obvious one and thus

H1(R, U(n)ad) ∼= ((Z/2Z)n/(Z/2Z))/Sn
∼= {(p, q) ∈ N2 : 0 6 p 6 q and p+ q = n}

(322)

It’s then easy to check that U(p, q), which is an inner form of (UC/R(n)∗

is sent to (p, q) under the natural map InnForm(U(n)ad) → H1(R, U(n)ad)
from where the conclusion follows.

We now state the analogous classification of unitary groups over p-adic
local fields:

Lemma IV.4.18. Let F be a p-adic local field. There is a natural decom-
position

Form(GLn,F ) = InnForm(GLn,F ) t
⊔
E

InnForm(UE/F (n)∗) (323)

where E travels over the degree 2 extensions of F (of which there are only
finitely many). Moreover,

InnForm(GLn,F ){GLk(D i
j
) : (i, j) = 1 and jk = n} (324)
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where D i
j

is the division algebra over F of invariant
i

j
and

InnForm(UE/F (n)∗) ∼=

{
{e} if n odd

Z/2Z if n even
(325)

Proof. The first claim follows quite easily from the fact (see [Mil, Chapter
IV,§4]) that the inner forms of GLn,F are of the form ∆× where ∆ is a
central simple F -algebra of dimension n2 and that such division algebras
are all of the form Matm(D i

j
) where D i

j
is the division algebra of invariant

i
j (in the sense loc. cit.).

The second claim follows, again, by explicitly computing the pointed set
H1(F, (UE/F (n)∗)ad). Let us det H := (UE/F (n)∗)ad. We use [Kot86b,

Theorem 1.2] to equate this to the computation of π0(Z(Ĥ)ΓF ). But,
Z(Ĥ) ∼= Z/nZ and it’s not hard to check that ΓF acts through its quotient
Gal(E/F ) and the non-trivial element of Gal(E/F ) acts by multiplication
by −1. The conclusion easily follows.

IV.4.3 Anisotropicity and unitary groups

In this subsection we list some natural conditions that guarantee anisotrop-
icity (modulo center) of unitary groups as well as the existence of elliptic
maximal tori.

We start with the following:

Lemma IV.4.19. Let E be a degree 2 étale algebra over F and set G∗ to be
U∗E/F (n). Let us set then set G := U(A, ∗) to be an inner form of G∗ Then:

1. If E ∼= F × F then G satisfies that Gad is F -anisotropic if and only if
G ∼= D× where D× is an F -central division algebra over F .

2. If E is a degree 2 extension of F , then G satisfies that Gad is F -
ansiotropic if G ∼= U(D, ∗) where D is an E-central division algebra.

Before we prove this, it’s useful to first recall the following:

Lemma IV.4.20. Let F be a field of characteristic 0 and let G be a con-
nected reductive group over F . Then, Gad is F -anisotropic if and only if
G(F ) contais no non-trivial unipotent elements.

Proof. This follows from the contents of [BT72, §8].

Lemma IV.4.19. Suppose first that E ∼= F×F and thatGad is F -anisotropic.
Then, we know from (or rather via the proof of) Lemma IV.4.16 that
G ∼= ∆× for some F -central simple algebra ∆. Note then that by the Artin-
Wedderburn theorem that ∆× ∼= GLm(D) for some (necessarily unique)
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F -central division algebra D. If m > 1 then G(F ) = GLm(D) contains
GLm(F ) which implies that G(F ) contains a unipotent element which con-
tradicts Lemma IV.4.20. Thus m = 1 and thus G ∼= D× as desired.

Conversely, if G ∼= D× then to show that Gad is anisotropic it suffices, by
Lemma IV.4.20, to show that G(F ) = D× contains no non-trivial unipotent
elements. But, note that the natural left action of D× on itself gives an
embedding ι : G ↪→ GLF (D) and so it suffices to show that the map D× ↪→
GLF (D) on F -points has no unipotent elements in the image. But, if u ∈ D×
were unipotent then that would mean that (ι(u)− I)n = 0 for some n > 1.
Note though that ι arises from an algebra embedding ι : D ↪→ EndF (D)
which allows us to rewrite this equation as ι ((u− 1)n) = 0. Since ι is
injective this implies that (u−1)n = 0 and since D is a division algebra this
implies that u = 1 as desired.

Suppose now that E is a degree 2 extension of F and let G ∼= U(D, ∗)
where D is an E-central division algebra. By Lemma IV.4.20 it suffices
to show that U(D, ∗)(F ) contais no non-trivial unipotent elements. Note
though that, by definition, U(D, ∗) is contained in ResE/FD

×. So,

U(D, ∗)(F ) ⊆ ResE/FD
× = D× (326)

The same argument as in the last paragraph then shows that no non-trivial
unipotent elements exist.

Remark IV.4.21. One cannot change (2) in Lemma IV.4.19 to an if and only
if. Indeed, note that over R, for example, U(n) := U(0, n) is anisotropic but
is of the form U(Matn(R), ∗).

We now would like to explain when unitary groups over a local field F
contain elliptic maximal tori. If F is a p-adic local field this is a non-question
by Lemma IV.1.6. Suppose now that F = R we then have the following:

Lemma IV.4.22. Let n > 1 be an integer. Then, a form G of GLn,R has
an elliptic maximal torus if:

1. If n = 2 and G arbitrary.

2. If n > 2 and G is an outer form of GLn,R.

Proof. By the classification in IV.4.17 and [Kal16, Lemma 3.2.1] it suffices
to analyze for which n do GLn,R and U(n) = U(0, n) have elliptic maximal
tori. In the former case since the elliptic maximal tori in GLn,F , for any
field F , are of the form ResF ′/FGm,E where F ′ is a degree n extension of F ′

it’s clear that elliptic maximal tori exist if and only if n = 2. For the latter
case since U(n) is always R-anisotropic the answer is clearly that elliptic
maximal tori exist for all n. The deisred conclusion follows.
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IV.4.4 Local-to-global definitions of unitary groups

We now explain the methodology for the construction of global unitary
groups from local ones. In other words, we discuss the question of whether
or not there is a (unique) unitary group over a number field F whose base
change to Fv (for all places v of F ) is some pre-perscribed unitary group.

So, let us fix F to be a global field (assumed to be a number field for
convenience). From the last section we know that to give a form of GLn,F is
the same as to give a class in H1(F,Aut(GLn,F )). Note then that for every
place v of F we have the usual localization map

H1(F,Aut(GLn,F ))→ H1(Fv,Aut(GLn,F )) (327)

We can then assemble these maps to give a map

loc : H1(F,Aut(GLn,F ))→
∏
v

H1(Fv,Aut(GLn,F )) (328)

To begin, we have the following well-known lemma:

Lemma IV.4.23. The localizaton map (327) is injective.

Proof. Note that the sequence (291) for GLn,F

1→ PGLn,F → Aut(GLn,F )→ Z/2Z→ 1 (329)

splits. Thus, it suffices to prove that the maps

H1(F,PGLn,F )→
∏
v

H1(Fv,PGLn,F ) (330)

and
H1(F,Z/2Z)→

∏
v

H1(Fv,Z/2Z) (331)

are injective.
To see that the map in (330) is injective, note that via the sequence

1→ Gm → GLn → PGLn,F → 1 (332)

we get a commutative diagram

H1(F,PGLn,F ) //

��

∏
v

H1(Fv,PGLn,F )

��

H2(F,Gm) //
∏
v

H2(Fv,Gm)

(333)
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where all vertical maps are injective (using Hilbert’s theorem 90 together
with the theory of twists as in [Ser13, Part I, §5.7]). Thus it suffices to show
that the map

H2(F,Gm)→
∏
v

H2(Fv,Gm) (334)

is injective. But, there are is an obvious commutative diagram

Br(F ) //

��

∏
v

Br(Fv)

��

H2(F,Gm) //
∏
v

H2(Fv,Gm)

(335)

where the vertical maps are isomorphisms. Thus, it suffices to show that

Br(F )→
∏
v

Br(Fv) (336)

is injective. This follows form the fundamental exact sequence of class field
theory (e.g. take the limit of the map in [Mil97, Chapter VII, Corollary
4.3]).

The fact that the map

H1(F,Z/2Z)→
∏
v

H1(Fv,Z/2Z) (337)

is injective follows from basic algebraic number theory. Namely, Kummer
theory implies that this is equivalent to the injectivity of the map

K×/(K×)2 →
∏
v

K×v /(K
×
v )2 (338)

which is simple to see (e.g. see [Mil97, Chapter VII, Theorem 1.1]).

As a corollary of the above we obtain the following:

Corollary IV.4.24. For any degree 2 étale algebra E over F the natural
map

locE : InnForm(UE/F (n)∗)→
∏
v

InnForm(UEv/Fv(n)∗) (339)

is injective.

Here we are abusing notation by denoting E ⊗F Fv by Ev. Of course,
since E is a degree 2 étale algebra over F , Ev is a degree 2 étale algebra
over Fv.
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We would now like to describe the explicit image of locE . In other
words, we’d like to discuss when a collection of inner forms of UEv/Fv(n)∗

for all places v of F is the simultaneous base change of some inner form of
UE/F (n)∗.

To do this it will be helpful to construct a map

εv : InnForm(U∗Ev/Fv(n))→ Z/2Z (340)

This map is given as follows (where we are using Lemma IV.4.17 and Lemma
IV.4.18 without mention):

1. Assume that Ev is a degree 2 extension of Fv. Then:

(a) if Fv is a p-adic local field then the map

εv : InnForm(U∗Ev/Fv(n))→ Z/2Z (341)

is the unique injective homomorphism.

(b) if Fv ∼= R then the map

εv : InnForm(U∗Ev/Fv(n))→ Z/2Z (342)

is defined as follows:

εv(U(p, q)) =

1 if n odd⌊
p− q

2

⌋
mod 2 if n even

(343)

(c) Assume that Ev ∼= Fv × Fv. Then:

i. if Fv is a p-adic local field then

εv : InnForm(U∗Ev/Fv(n))→ Z/2Z (344)

is the quotient map by 2(Z/nZ) after making the identifica-
tion InnForm(U∗Ev/Fv(n)) ∼= Z/nZ as above.

ii. if Fv ∼= R then

InnForm(U∗Ev/Fv(n))→ Z/2Z (345)

is the unique injective homomorphism

Of course, we have neglected to say what happens when Fv ∼= C in all cases,
but here there are no non-trivial inner forms and so εv is just the trivial
map.

We can now explicitly state which collections of local unitary groups
come from a global unitary group:
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Proposition IV.4.25. Let F be a number field and let E be a degree 2 étale
algebra over F . Then, the image of the injective map

InnForm(UE/F (n)∗)→
∏
v

InnForm(UEv/Fv(n)∗) (346)

is the set of all tuples (Uv)v in
∏
v

InnForm(U∗Ev/Fv(n)) such that the following

two conditions hold:

1. Uv ∼= UEv/Fv(n)∗ for almost all v.

2. The equality ∑
v

εv(Uv) = 0 (347)

holds as an element of Z/2Z.

Proof. This is contained in the contents of [Clo91, §2].

Remark IV.4.26. Note that εv is trivial for all v when n is odd, and so we
see that in this case the only obstruction to a tuple (Uv)v of inner forms
of U∗Ev/Fv(n) being the simultaneous base change of some inner form of

U∗E/F (n) is that Uv ∼= U∗Ev/Fv(n) for almost all v.

IV.4.5 Unitary groups with no relevant global endoscopy

We now discuss sufficient conditions for a unitary group U over a number
field F , such that Uad is F -anisotropic, to have no relevant global endoscopy
as in §I.5.

We begin by observing the following:

Lemma IV.4.27. Let F be a global field and let E be a quadratic extension
of E. Let U be an element of InnForm(U∗E/F (n)). Then, if U ∼= U(D, ∗) for
D an E-central division algebra then U has no relevant elliptic endoscopy.

Proof. We would like to apply Proposition I.5.3. To do this we need to
show that Uad is F -anisotropic and that U satisfies the Hasse principle.
The former condition is Lemma IV.4.19. The latter is contained in [PS92,
§6.7].

Now, let T be a maximal torus in U. Then, we need to show that the
containment Z(Û) ⊆ T̂ΓF is an equality or, equivalently, that T̂ΓF ⊆ Z(Û).
Note though that evidently

T̂ΓF ⊆ T̂ΓE = T̂E
ΓE

(348)

Note though that, by assumption, TE is a maximal torus of UE
∼= D×. But,

all maximal tori of D× are induced, say they are equal to ResM/EGm,E where

M is a degree n extension of E. It is then clear to see that T̂E
ΓE ⊆ Z(Û)

as desired.
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[CD90] , Le théorème de paley-wiener invariant pour les groupes
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