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Abstract

In this paper, we explain how Scholze’s characterization of the lo-
cal Langlands correspondence for general linear groups can be made to
work for a more general class of reductive groups. Our paper shows,
in the case of supercuspidal L-parameters, how to overcome the key
representation-theoretic problem of understanding how Scholze’s con-
struction works in a setting with non-singleton L-packets.

1 Introduction

In [Sch13b], Scholze gave a new construction of the local Langlands corre-
spondence for GLn,F (F ), for F a p-adic field. A key component of Scholze’s
paper is that he was able to characterize his correspondence by an ex-
plicit equation relating his construction to certain functions fτ,h of geometric
provenance.

A major appeal of Scholze’s characterization of the local Langlands cor-
respondence for GLn,F (F ) is that it should be possible to generalize to the
setting of a general reductive group G. In contrast, the standard charac-
terization for the GLn,F (F ) case, as first described fully in [Hen00], is spe-
cialized to work for GLn,F (F ). Similarly, the characterizations for classical
groups following from [Art13] use twisted endoscopy to reduce to the case of
GLn,F (F ) where Henniart’s characterization can be applied. Unfortunately,
many groups can not be related to GLn,F (F ) via endoscopy and for these
cases one needs a more general approach. Moreover, even in cases where this
is possible, having a characterization internal to the group G is desirable.
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The two major complications of generalizing the results of [Sch13b] to
arbitrary groups G are:

(Q1) How to generalize the functions fτ,h of [Sch13b] and prove they satisfy
analogous equations.

(Q2) Decide whether two constructions of the local Langlands correspon-
dence satisfying the generalized equations must coincide.

The question in (Q1) has been considered by several authors. Namely, the
functions fτ,h were generalized in [Sch13a] to PEL/EL type cases (and in
[You19] to abelian type cases) and in [SS13], Scholze and Shin give a precise
conjecture generalizing the main equation in [Sch13b]. We call the general-
ized equation in [SS13] the Scholze–Shin equation. In [SS13] it is proven that
these equations hold in EL type cases and in [BMY19], the authors prove
the Scholze–Shin equations hold for supercuspidal parameters of unramified
unitary groups (with the local Langlands conjecture as in [Mok15]).

That said, the question in (Q2) does not seem to have been studied at all
in [SS13] or subsequent work. This is surprising since while (Q2) is nearly
trivial in the case of GLn,F (F ), it becomes highly non-trivial for more general
groups due to the existence of non-singleton L-packets. It is important to
note that (Q2) is of a purely representation-theoretic nature and hence is
non-obvious even for groups G which have well-known associated geometric
objects. For instance, in the case where G is a quasi-split unitary group (Q2)
is non-obvious despite the fact that Shimura varieties for globalizations of
these groups are well-understood.

The goal of this paper is to resolve (Q2), modulo some extra conditions,
for a substantial class of groups in the case of supercuspidal L-parameters.
These are the L-parameters φ : WF × SL2(C) → LG that do not factor
through a proper Levi subgroup LM ⊂ LG and where the SL2(C)-factor
acts trivially. The supercuspidal L-parameters are conjecturally those whose
L-packet consists entirely of supercuspidal representations. This is a natural
class of parameters to consider since their conjectured properties are well
understood and these are precisely the parameters that appear in Kaletha’s
type-theoretic construction of the local Langlands correspondence [Kal19].
We call the assignment of packets to supercuspidal L-parameters satisfying
some basic properties a supercuspidal local Langlands correspondence (see §3
for a precise definition).

Our main result is as follows:

Theorem 1.1 (Imprecise version of Theorem 3.3). Let G be a ‘good’ re-
ductive group over F and suppose Πi for i = 1, 2 are supercuspidal local
Langlands correspondences for G that are compatible with elliptic endoscopy,
satisfy standard desiderata, and such that

1. Each representation appearing in a singleton L-packet of Π1 is con-
tained in an L-packet for Π2,
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2. The L-packets of Π1 and Π2 satisfy the Scholze–Shin equations with
respect to the same set of functions {fµτ,h}.

Then Π1 = Π2.

Remark 1.2. The reader will note that to make precise the compatibility
with elliptic endoscopy in the above statement, one requires constructions
of Πi for elliptic endoscopic groups of G. These groups will typically be
quite similar to G and so we have ignored this for the purposes of the
introduction.

Remark 1.3. Our method, as currently stated, cannot hope to handle
all groups G. The definition of a ‘good’ group is somewhat technical and
discussed in §3. Forms of GLn,F and SO2n+1,F are ‘good’ while forms of
Sp2n,F and SO2n,F are not in general.

Condition 1. in Theorem 1.1 seems unavoidable since we only consider
supercuspidal parameters and there is not at present a precise expecta-
tion as to which subset of the set of irreducible G(F )-representations these
should correspond to. We expect that most constructions of a supercuspi-
dal local Langlands correspondence will identify the relevant set and hence
we have some hope that this condition can be checked on a case by case
basis. For instance, the union of the L-packets appearing in Kaletha’s con-
struction in [Kal19] is precisely the set of non-singular supercuspidals for
the groups he considers.

The idea for the proof of Theorem 1.1 is simple, but illuminating, and is
inspired by ideas present in [Art13]. The four major steps are as follows:

Step 1: Every parameter ψ of G with non-singleton L-packet factorizes
through a parameter ψH of an elliptic hyperendoscopic group H
of G with the property that ψH has a singleton L-packet.

Step 2: Using the endoscopic character identities and Step 1 the char-
acterization is reduced to the case of singleton packets.

Step 3: Show our desiderata imply the atomic stability property for su-
percuspidal L-packets. This property states that for the rep-
resentations we consider, a stable linear combination of distri-
bution characters of irreducible G(F )-representations is in fact
a linear combination of the stable characters attached to each
L-packet.

Step 4: The Scholze–Shin equations plus atomic stability are enough to
pin down singleton packets by the Brauer–Nesbitt theorem.
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Note that the Scholze–Shin equations via step Step 4 allow us to avoid the
use of twisted endoscopy.

Combining the above theorem with the aforementioned proof that the
Scholze–Shin equations hold for the ‘supercuspidal’ local Langlands conjec-
ture as in [Mok15], we obtain:

Theorem 1.4 (See Theorem 6.2). The supercuspidal local Langlands corre-
spondence for unramified unitary groups as given by [Mok15] is characterized
by Theorem 1.1.
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2 Notation

The following notation will be used throughout the rest of the paper unless
stated otherwise.

Let F be a p-adic local field. Fix an algebraic closure F and let F un be
the maximal unramified extension of F in F . Let L be the completion of
F un and fix an algebraic closure L.

Let G be a (connected) reductive group over F . We denote by G(F )reg

the regular semisimple elements in G(F ) and by G(F )ell the subset of elliptic
regular semisimple elements. We denote by D, or DG, the Harish-Chandra
discriminant map on G(F ). If γ, γ′ ∈ G(F ) are stably conjugate we denote
this by γ ∼st γ

′.
Let Ĝ be the connected Langlands dual group of G and let LG be the

Weil group version of the L-group of G as defined in [Kot84b, §1]. We denote
the set of irreducible smooth representations of G(F ) by Irr(G(F )) and by
Irrsc(G(F )) the subset of supercuspidal representations. For a finite group
C the notation Irr(C) means all irreducible C-valued representations of C.

A supercuspidal Langlands parameter is an L-parameter (see [Bor79,
§8.2]) ψ : WF → LG such that the image of ψ is not contained in a proper
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Levi subgroup of LG. We say that supercuspidal parameters ψ and ψ′ are
equivalent if they are conjugate in Ĝ and denote this by ψ ∼ ψ′. Let Cψ be
the centralizer of ψ(WF ) in Ĝ. Then by [Kot84b, §10.3.1], ψ is supercuspi-
dal if and only if the identity component C◦ψ of Cψ is contained in Z(Ĝ)ΓF .
We define the group Cψ := Cψ/Z(Ĝ)ΓF which is finite by our assumptions
on ψ. For the sake of comparison, in [Kal16a, Conj. F], Kaletha defines
S\ψ := Cψ/(Cψ ∩ [Ĝ]der)

◦. For ψ a supercuspidal parameter, we have

S\ψ = Cψ. (1)

Indeed,

(Cψ ∩ [Ĝ]der)
◦ = (C◦ψ ∩ [Ĝ]der)

◦ ⊂ (Z(Ĝ)ΓF ∩ [Ĝ]der)
◦ = {1}, (2)

from where the equality follows.
Define Z1(WF , G(L)) to be the set of continuous cocycles of WF valued

in G(L) and let B(G) := H1(WF , G(L)) be the corresponding cohomology
group. Let κ : B(G)→ X∗(Z(Ĝ)ΓF ) be the Kottwitz map as in [Kot97].

An elliptic endoscopic datum of G (cf. [Kot84b, 7.3-7.4]) is a triple
(H, s, η) of a quasisplit reductive group H, an element s ∈ Z(Ĥ)ΓF , and
a homomorphism η : Ĥ → Ĝ. We require that η gives an isomorphism

η : Ĥ → Z
Ĝ

(η(s))◦, (3)

that the Ĝ-conjugacy class of η is stable under the action of ΓF , and that
(Z(Ĥ)ΓF )◦ ⊂ Z(Ĝ).

An extended elliptic endoscopic datum of G is a triple (H, s, Lη) such that
Lη : LH → LG and (H, s, Lη|

Ĥ
) gives an elliptic endoscopic datum of G.

An extended elliptic hyperendoscopic datum is a sequence of tuples of data
(H1, s1,

Lη1), . . . , (Hk, sk,
Lηk) such that (H1, s1,

Lη1) is an extended elliptic
endoscopic datum of G, and for i > 1, the tuple (Hi, si,

Lηi) is an extended
elliptic endoscopic datum of Hi−1. An elliptic hyperendoscopic group of G is
a quasisplit connected reductive group Hk appearing in an extended elliptic
hyperendoscopic datum for G as above.

3 Statement of main result

Throughout the rest of the paper we assume that our groups G satisfy the
following assumption:

(Ext) For each elliptic hyperendoscopic group H of G and each elliptic endo-
scopic datum (H ′, s, η′) of H, one can extend (H ′, s, η′) to an extended
elliptic endoscopic datum (H ′, s, Lη

′
) such that Lη′ : LH ′ → LH.
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Remark 3.1. The authors are not aware of any example for G a group
over F where this property does not hold. If G and all its hyperendoscopic
groups have simply connected derived subgroup, then (Ext) follows from
[Lan79, Prop. 1]. In particular, unitary groups satisfy (Ext).

All elliptic endoscopic data (H, s, η) for G a symplectic or special or-
thogonal group can also be extended to a datum (H, s, Lη) ([Kal16a, pg.5]).
Since the elliptic endoscopic groups of symplectic and special orthogonal
groups are products of groups of this type ([Wal10, §1.8]), it follows that
symplectic and special orthogonal groups also satisfy (Ext).

One could likely remove the assumption (Ext) altogether at the cost
of having to consider z-extensions of endoscopic groups (see [KS99]) and
perhaps slightly modify the statement of Theorem 3.3 to account for these
extra groups.

We now state the main result. Let us fix G∗ to be a quasi-split reductive
group over F . We define a supercuspidal local Langlands correspondence for
a group G∗ to be an assignment

ΠH :


Equivalence classes of

Supercuspidal L-parameters
for H

→
{

Subsets of
Irrsc(H(F ))

}
, (4)

for every elliptic hyperendoscopic group H of G∗ satisfying the following
properties:

(Dis) If ΠH(ψ) ∩ΠH(ψ′) 6= ∅ then ψ ∼ ψ′.

(Bij) For each Whittaker datum wH of H, a bijection

ιwH : ΠH(ψ)→ Irr(Cψ). (5)

This bijection ιwH gives rise to a pairing

〈−,−〉wH : ΠH(ψ)× Cψ → C, (6)

defined as follows:

〈π, s〉wH := tr(s | ιwH (π)). (7)

(St) For all supercuspidal L-parameters ψ of H, the distribution

SΘψ :=
∑

π∈ΠH(ψ)

〈π, 1〉Θπ, (8)

is stable and does not depend on the choice of wH .
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(ECI) For all extended elliptic endoscopic data (H ′, s, Lη) for H and all
h ∈ H (H(F )), suppose ψH is a supercuspidal L-parameter of H
that factors through Lη by some parameter ψH′ . Then such a ψH′

must be supercuspidal and we assume it satisfies the endoscopic
character identity :

SΘψH′ (h
H′) = Θs

ψH (h), (9)

where we define hH′ to be a transfer of h to H ′ (e.g. see [Kal16a,
§1.3]) and we define

Θs
ψH :=

∑
π∈ΠH(ψH)

〈π, s〉Θπ. (10)

the s-twisted character of ψH .

Suppose now that ziso ∈ Z1(WF , G(L)) projecting to an element of B(G)bas.
Let G be the inner form of G∗ corresponding to the projection of ziso to
Z1(WF ,Aut(G)(F )). We then define a supercuspidal local Langlands cor-
respondence for the extended pure inner twist (G, ziso) (cf. [Kal16a, §2.5])
to be a supercuspidal local Langlands correspondence for G∗ as well as a
correspondence

Π(G,ziso) :

{
Supercuspidal L-parameters

for G

}
→
{

Subsets of
Irrsc(G(F ))

}
, (11)

satisfying

(Bij’) For each Whittaker datum wG of G, a bijection

ιwG : ΠG(ψ)→ Irr(Cψ, χziso), (12)

where Irr(Cψ, χziso) denotes the set of equivalence classes of irreducible
algebraic representations of Cψ with central character on Z(Ĝ)ΓF equal
to χziso := κ(ziso). This gives rise to a pairing

〈−,−〉wG : Cψ × Irr(Cψ, χziso)→ C, (13)

defined as
〈π, s〉wG := tr(s | ιwG(π)). (14)

(ECI’)For all supercuspidal parameters ψ of G and all extended elliptic en-
doscopic data (H, s, Lη) of G such that ψ factors as ψ = Lη ◦ψH , there
is an equality

Θs
ψH (hH) = SΘψ(h), (15)

where h ∈ H (G(F )) and SΘψ is independent of choice of Whittaker
datum in (Bij’).
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For a supercuspidal local Langlands correspondence Π for (G, ziso) we say
that a subset of Irr(H(F )) of the form Πψ(H) is a supercuspidal L-packet for
ΠH . We furthermore say that an element π of Irr(H(F )) is ΠH-accessible
if π is in a supercuspidal L-packet for ΠH . We say that an element π of
Irr(H(F )) is singly ΠH-accessible if {π} is an L-packet for ΠH .

A priori, the above axioms (Dis), (Bij)-(Bij’),(St), and (ECI)-(ECI’)
are not enough to uniquely specify a supercuspidal local Langlands corre-
spondence Π for G∗ even under the specification of the set of Π-accessible
representations. The goal of our main theorem is to explain a sufficient ex-
tra condition which does uniquely specify a supercuspidal local Langlands
correspondence.

In the statement of this condition we need to assume an extra property
of G. Namely, we say that G∗ is good if for every elliptic hyperendoscopic
group H of G∗ we have:

(Mu) There exists a set SH of dominant cocharacters of HF with the fol-
lowing property. Let ψH1 , ψH2 be any pair of supercuspidal parameters
of H such that for all dominant cocharacters µ ∈ SH , we have an
equivalence r−µ ◦ ψH1 ∼ r−µ ◦ ψH2 . Then ψH1 ∼ ψH2 .

Here r−µ is the representation of LH as defined in [Kot84a, (2.1.1)].We say
that G is good if G∗ is. We call a set SH as in assumption (Mu) sufficient.

To this end, let us define a Scholze–Shin datum {fµτ,h} for G to consist
of the following data for each elliptic hyperendoscopic group H of G:

• A compact open subgroup KH ⊂ H(F ),

• A sufficient set SH of dominant cocharacters of HF ,

• For each µ ∈ SH of with reflex field Eµ, each τ ∈ WEµ , and each
h ∈H (KH), a function fµτ,h ∈H (H(F )).

Let us say that a supercuspidal local Langlands correspondence for G sat-
isfies the Scholze–Shin equations relative to the Scholze–Shin datum {fµτ,h}
if the following holds:

(SS) For all elliptic hyperendoscopic groups H, all h ∈H (KH), all µ ∈ SH ,
and all parameters ψH of H one has that

SΘψH (fµτ,h) = tr(τ | (r−µ ◦ ψH)(χµ))SΘψH (h), (16)

where χµ := | · |−〈ρ,µ〉 and ρ is the half-sum of the positive roots of
H (for a representation V and character χ we denote by V (χ) the
character twist of V by χ).

Remark 3.2. The conditions (Mu) and (SS) allow the set SH to include
non-minuscule cocharacters. As we remarked in the introduction, the only
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known candidates for the functions fµτ,h have been constructed with certain
non-trivial assumptions (e.g. see [Sch13a] and[You19]). In particular, they
assume that µ is minuscule. That said, it seems reasonable to the authors
that one could extend these definitions to work in the case of arbitrary µ
using the theory of the moduli of mixed characteristic shtukas.

Similarly, the only known method to show that the aforementioned
set of functions {fµτ,h} form a Scholze–Shin datum (i.e. that the Scholze–
Shin equations hold for these candidate functions) uses global techniques
involving Shimura varieties and therefore necessitates the cocharacter µ
to be minuscule. It again seems conceivable to the authors that future
work on the cohomology of moduli spaces of mixed characteristic shtukas,
perhaps in analogy with the work of [GL17], could lead to purely local
proofs, freeing us from this constraint.

Because the minuscule condition is not necessary for the arguments
in this paper and shows up more as an artifact of arguments using global
methods to prove (SS), we have chosen to state our definitions in the above
generality.

We then have the following result:

Theorem 3.3. Let G be a good group and suppose Πi for i = 1, 2 are super-
cuspidal local Langlands correspondences for (G, ziso) such that

1. For every elliptic hyperendoscopic group H of G the set of singly Π1
H-

accessible representations is contained in the set of Π2
H-accessible rep-

resentations.

2. There exists a Scholze–Shin datum {fµτ,h} such that Πi satisfies (SS)
relative to {fµτ,h} for i = 1, 2.

Then Π1 = Π2 and for every (H, z), either equal to (H, 1) where H is an
elliptic hyperendoscopic group of G or equal to (G, ziso), and choice of Whit-
taker datum wH , the bijections ιiwH for i = 1, 2 agree.

Remark 3.4. In this paper we have considered only G that arise as ex-
tended pure inner twists of G∗ (e.g. see [Kal16a]). In general, the map

B(G∗)bas → Inn(G∗), (17)

where Inn(G∗) := im[H1(F,G∗ad(F )) → H1(F,Aut(G∗)(F )] denotes the
set of inner twists of G∗, need not be surjective. However, when G∗ has
connected center, this map will be surjective (see [Kal16a, pg.20]). In gen-
eral, one can likely consider all inner twists by adapting the arguments of
this paper to the language of rigid inner twists as in [Kal16b] (cf. [Kal16a]).
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4 Atomic stability of L-packets

Before we begin the proof of Theorem 3.3 in earnest, we first discuss the
following extra assumption one might make on a supercuspidal local Lang-
lands correspondence Π for the group G which, for this section, we assume
is quasi-split. Namely, let us say that Π possesses atomic stability if the
following condition holds:

(AS) If S = {π1, ..., πk} is a finite subset of Π-accessible elements of Irrsc(G(F ))

and {a1, ..., ak} is a set of complex numbers such that Θ :=

k∑
i=1

aiπi is

a stable distribution, then there is a partition

S = Πψ1(G) t · · · tΠψn(G) (18)

such that

Θ =

n∑
j=1

bjSΘψj (19)

(i.e. that ai is constant on Πψi(G)).

We then have the following result:

Proposition 4.1. Let Π be supercuspidal local Langlands correspondence for
a group G. Then, Π automatically possesses atomic stability.

Proposition 4.1 will follow from the following a priori weaker proposition.
To state it we make the following definitions. For supercuspidal L-parameters
ψ1, . . . , ψn we denote by D(ψ1, . . . , ψn) the C-span of the distributions Θπ

for π ∈ ΠG(ψ1) ∪ · · · ∪ ΠG(ψn) and let S(ψ1, . . . , ψn) be the subspace of
stable distributions in D(ψ1, . . . , ψn).

Proposition 4.2. For any finite set of supercuspidal L-parameters {ψ1, . . . , ψn}
one has that {SΘψ1 , . . . , SΘψn} is a basis for S(ψ1, . . . , ψn).

Let us note that this proposition actually implies Proposition 4.1. Indeed,
since each πi ∈ S is accessible we know that we can enlarge S to be a union
Πψ1(G)t· · ·tΠψn(G) of L-packets. Proposition 4.1 is then clear since every
stable distribution in the span of S is contained in S(ψ1, . . . , ψn).

Before we proceed with the proof of Proposition 4.2 we establish some
further notation and basic observations. For an π element of Irrsc(G(F )) we
denote by fπ the locally constant C-valued function on G(F )reg given by the
Harish-Chandra regularity theorem. We then obtain a linear map

R : D(Irrsc(G(F )))→ C∞(G(F )ell,C) (20)
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given by linearly extending the association Θπ 7→ fπ |G(F )ell . HereD(Irrsc(G(F )))
is the C-span of the distributions on H(G(F )) of the form Θπ for π ∈
Irrsc(G(F )). We also have averaging maps

Avg : C∞(G(F )ell,C)→ C∞(G(F )ell,C) (21)

given by

Avg(f)(γ) :=
1

nγ

∑
γ′

f(γ′) (22)

where γ′ runs over representatives of the conjugacy classes of G(F ) stably
equal to the conjugacy class of γ and nγ is the number of such classes (which
is finite since F is a p-adic field).

We then have the following well-known lemma concerning R:

Lemma 4.3 ([Kaz86, Theorem C]). The linear map R is injective.

In addition, we have the following observation concerning the interaction
between R and Avg, which follows from the well-known fact that Θ is stable
implies that R(Θ) is stable:

Lemma 4.4. Let Θ ∈ D(Irrsc(G(F ))) be stable as a distribution. Then,
Avg(R(Θ)) = R(Θ).

We may now proceed to the proof of Proposition 4.2:

Proof. (Proposition 4.2) By assumption (Bij), the set of virtual characters
SΘs

ψi
, as s runs through representatives for the conjugacy classes in Cψ and

i runs through {1, . . . , n}, is a basis of D(ψ1, . . . , ψn). It suffices to show
this in the case when n = 1 in which case it is clear. Indeed, writing just ψ
instead of ψ1, we see that it suffices to note that the matrix (〈π, s〉), where π
runs through the elements of Πψ(G), is unitary, and thus invertible, by the
orthogonality of characters.

We next show that for any supercuspidal L-parameter ψ and any non-
trivial s in Cψ we have that Avg(R(SΘs

ψ)) = 0. Indeed, we begin by observ-
ing that by [HS12, Lemma 6.20] we have that

Avg(R(SΘs
ψ))(γ) =

1

nγ

∑
γ′

∑
γH∈X(γ′)/∼st

∆(γH , γ
′)

∣∣∣∣DH(γH)

DG(γ′)

∣∣∣∣SΘφH (γH)

(23)
where here γ′ travels over the set of conjugacy classes of G(F ) stably equal
to the conjugacy class of γ and, as in loc. cit., X(γ′) is the set of conjugacy
classes in H(F ) that transfer to γ, and ∆(γH , γ

′) is the usual transfer factor,
and D denotes the discriminant function.

Let us note that we can rewrite this sum as

1

nγ

∑
γH∈X(γ)/∼st

∑
γ′

∆(γH , γ
′)

∣∣∣∣DH(γH)

DG(γ′)

∣∣∣∣
SΘφH (γH). (24)

11



because X(γ′)/ ∼st is independent of the choice of γ′.
Note that DG(γ′) = DG(γ) for all γ′ stably conjugate to γ (since DG(γ′)

is defined in terms of the characteristic polynomial of Ad(γ′)) and thus we
can further rewrite this as

1

nγ

∑
γH∈X(γ)/∼st

∣∣∣∣DH(γH)

DG(γ)

∣∣∣∣
∑

γ′

∆(γH , γ
′)

SΘφH (γH) (25)

and so it suffices to show that this inner sum
∑
γ′

∆(γH , γ
′) is zero.

For γ′ ∼st γ, we have

∆(γH , γ
′) = 〈inv(γ, γ′), s〉∆(γH , γ), (26)

where inv(γ, γ′) ∈ K(Iγ/F )D (as in [Shi10, §2.2]). Since γ is elliptic, γ′ 7→
inv(γ, γ′) gives a bijection between F -conjugacy classes in the stable conju-
gacy class of γ and K(Iγ/F )D. Hence∑

γ′

∆(γH , γ
′) = ∆(γH , γ)

∑
χ∈K(Iγ)D

χ(s). (27)

In particular, it suffices to show that s gives a nontrivial element of K(Iγ/F ).
Since (H, s, η) is a nontrivial elliptic endoscopic datum and γ is elliptic, this
follows from [Shi10, Lemma 2.8].

Now, since the set {SΘψ1 , . . . , SΘψn} is independent (by assumption
(Dis)) it suffices to show that this set generates S(ψ1, . . . , ψn). But, this
is now clear since if Θ ∈ S(ψ1, . . . , ψn) then we know by Lemma 4.4 that
Avg(R(Θ)) = R(Θ). On the other hand, writing

Θ =

n∑
i=1

∑
s

aisSΘs
ψi

(28)

we see from the above discussion, as well as combining assumption (St) with
Lemma 4.4, that

Avg(R(Θ)) =
n∑
i=1

R(SaieΘψi) = R

(
n∑
i=1

aieSΘψi

)
(29)

(identifying SΘψi with SΘe
ψi

where e is the identity conjugacy class in Cψ).
The claim then follows from Lemma 4.3.

5 Proof of main result

Let us begin by explaining that it suffices to assume G is quasi-split. Indeed,
note that the assumptions of Theorem 3.3 are also satisfied for (G, ziso) equal
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to (G∗, 1) and so, in particular, if we have proven the theorem in the case
of (G∗, 1) then we know that Π1

G∗ = Π2
G∗ . Now, let ψ be any supercuspidal

L-parameter for G. By assumption (ECI’) we have that

SΘ1
ψ(h) = SΘ1

ψG∗ (h
G∗) = SΘ2

ψG∗ (h
G∗) = SΘ2

ψ(h) (30)

for all h ∈H (G(F )) and where the superscripts correspond to those of Πi.
By independence of characters, this implies that Π1

(G,ziso)(ψ) = Π2
(G,ziso)(ψ).

It remains to show that ι1wH = ι2wH . Since each ι
i
wG

(π) is algebraic, it suffices
to show that for all π ∈ Π1

(G,ziso)(ψ) = Π2
(G,ziso)(ψ) one has that 〈π, s〉1wH =

〈π, s〉2wH for all s ∈ Cψ. By independence of characters, it suffices to show
that Θ1,s

ψ = Θ2,s
ψ for all s ∈ Cψ. By the standard bijection (H, s, Lη, ψH)⇐⇒

(ψ, s) (cf. [BM20, Prop. 2.10]) and the (Ext) assumption, each such s comes
from an extended elliptic endoscopic datum (H, s, Lη). Hence by (ECI’) we
have reduced to the quasi-split setting. We now work in the situation when
(G, ziso) = (G∗, 1).

Let us begin with the following lemma:

Lemma 5.1. Suppose that H is an elliptic hyperendoscopic group of G and
suppose that Π1

H(ψ) is a singleton set {π}. Then, in fact, {π} = Π2
H(ψ).

Proof. Since {π} is a supercuspidal packet for Π1
H , we have by assumption

(St) that Θπ is stable. By the assumption of the theorem, π is Π2
H -accessible

and since Π2
H satisfies (AS) (by the contents of §4), we have {π} = Π2

H(ψ′)
for some supercuspidal L-parameter ψ′ of H. Then, by the assumption of
the theorem we have that

tr(τ | (r−µ ◦ ψ)(χµ)) tr(h | π) = tr(fµτ,h | π) = tr(τ | (r−µ ◦ ψ′)(χµ)) tr(h | π)
(31)

In particular, choosing h ∈ H (KH) such that tr(h | π) 6= 0 and letting τ
vary we deduce that

tr(τ | (r−µ ◦ ψ)(χµ)) = tr(τ | (r−µ ◦ ψ′)(χµ)) (32)

for all τ ∈ WE . This implies, since ψ is supercuspidal so that r−µ ◦ ψ and
r−µ ◦ ψ′ are semi-simple, that r−µ ◦ ψ ∼ r−µ ◦ ψ′ for all µ ∈ SH . By our
assumption that SH is sufficient, we deduce that ψ ∼ ψ′. In particular,
{π} = Π2

ψ(H) as desired.

Lemma 5.2. Let H be an elliptic hyperendoscopic group for G. Let ψ be a
supercuspidal parameter for H and suppose Cψ 6= {1}. If ρ is an irreducible
representation of CψH then there exists a nontrivial s ∈ Cψ such that the
trace character χρ of ρ satisfies tr(s | ρ) 6= 0.

Proof. Suppose ρ vanishes on all nontrivial s. Then we have

1 = 〈χρ, χρ〉 =
1

|Cψ|

∑
s∈Cψ

χρ(s)
2 =

1

|Cψ|
χρ(1)2 =

1

|Cψ|
dim(ρ)2, (33)
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so that |Cψ| = dim(ρ)2. But every irreducible representation ρ′ of Cψ is
isomorphic to an irreducible factor appearing with multiplicity dim(ρ′) in the
regular representation of Cψ, which has dimension |Cψ|. Hence ρ must be the
unique irreducible representation of Cψ, which implies that ρ is isomorphic to
the trivial representation, and hence that |Cψ| = 1 contrary to assumption.

We now explain the proof of Theorem 3.3 in general:

Proof. (of Theorem 3.3) We prove this by inducting on the number of roots
k for elliptic hyperendoscopic groups H of G. If k = 0 then H is a torus.
Since every distribution on H is stable, one deduces from assumption (Dis)
and assumption (St) that Π1

H(ψ) is a singleton and thus we are done by
Lemma 5.1. Suppose now that the result is true for elliptic hyperendoscopic
groups of G with at most k roots. Let H be an elliptic hyperendoscopic
group of G with k + 1 roots and let ψ be a supercuspidal parameter of H.
We wish to show that Π1

H(ψ) = Π2
H(ψ). If Π1

H(ψ) is a singleton, then we are
done again by Lemma 5.1. Otherwise, we show that Π1

H(ψ) ⊂ Π2
H(ψ), which

by (Bij) will imply that Π1
H(ψ) = Π2

H(ψ). By Lemma 5.2, we can find a
non-trivial s ∈ Cψ and a lift s ∈ Cψ such that 〈π, s〉 6= 0. By definition of
Cψ, we have that s /∈ Z(Ĝ). Now, it suffices to show that Θ1,s

ψ = Θ2,s
ψ since

then by independence of characters, we deduce that π ∈ Π2
H(ψ) as desired.

To show that Θ1,s
ψ = Θ2,s

ψ for all non-trivial s ∈ Cψ we proceed as
follows. We obtain, by combining our assumption (Ext) and [BMY19,
Proposition I.2.15]) from (ψ, s), an extended elliptic endoscopic quadruple
(H ′, s, Lη, ψH

′
) with ψH′ supercuspidal so that ψ = Lη ◦ ψH′ . One then has

from Assumption (ECI) that

Θ1,s
ψ = Θ2,s

ψ ⇐⇒ SΘ1
ψH′

= SΘ2
ψH′

(34)

Moreover, since s is non-central, we know that H ′ has a smaller number of
roots than H and thus SΘ1

ψH′
= SΘ2

ψH′
by induction. The conclusion that

Π1 = Π2 follows.
Let us now show that for any supercuspidal L-parameter ψ one has that

ι1wH = ι2wH for all elliptic hyperendoscopic groups H of G and Whittaker
data wH of H. It suffices to show that 〈π, s〉1wH = 〈π, s〉2wH for all π ∈
Π1
ψ(H) = Π2

ψ(H). By independence of characters, it suffices to show that
Θ1,s
ψ = Θ2,s

ψ for all s ∈ Cψ. Since s ∈ Cψ, there exists, associated to the pair
(ψ, s), a quadruple (H ′, s, Lη, ψH

′
) as in [BMY19, Proposition I.2.15] (again

using also assumption (Ext)) where H ′ is an elliptic endoscopic group of H
and ψH′ is a parameter such that ψ = Lη ◦ ψH′ . By assumption (ECI) it
suffices to show that SΘ1

ψH′
= SΘ2

ψH′
, but this follows from the previous part

of the argument since we know that Π1
H′(ψ

H′) = Π2
H′(ψ

H′). The theorem
follows.
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6 Examples

In this last section we discuss some examples of where the conditions neces-
sary to apply Theorem 3.3 are satisfied.

6.1 The characterization in the unitary case

We start by discussing the case of unitary groups which was mentioned
several times in the introduction. Namely, let F be an extension of Qp and
let E be a quadratic extension of F . Let us set U∗E/F,n to be the Zariski
closure of the set

U∗E/F,n(F ) =
{
g ∈ GLn,E(E) : gJnσ(g)−1 = Jn

}
where σ is the unique non-trivial element of Gal(E/F ) and Jn is the anti-
diagonal matrix with ai,n−i = (−1)i−1. We call this the quasi-split unitary
group of dimension n associated to the extension E/F .

We call a group G over F a unitary group of dimension n associated to
the extension E/F if one has G∗ = U∗E/F,n. If n is odd then any unitary
group is automatically quasi-split, but if n is even there is precisely one
isomorphism class of unitary group which is not quasi-split. Note though
that every inner form of U∗E/F,n can be upgraded to a pure inner twist, and
we leave such choice implicit. We say that G is unramified if the extension
E/Qp is unramified.

Let us note that if G is a unitary group of dimension n associated to an
extension E/F then it is automatically good. Indeed, note that every elliptic
endoscopic group of G is of the form U∗E/F,a ×U

∗
E/F,b for some a, b ∈ N such

that a + b = n (e.g. see [Rog90, Proposition 4.6.1]). From this we deduce
that the elliptic hyperendoscopic groups of G are given by U∗E/F,P where
P = (n1, . . . , nk) is a partition of n and

U∗E/F,P := U∗E/F,n1
× · · · × U∗E/F,nm

We note then that G is clearly good as we can take SU
∗
E/F,P to be {µP,std}

where
µP,std = µn1,std × · · · × µnm,std

where µni,std is the cocharacter corresponding to the standard representation
of U∗E/F,ni .

Thus, we deduce the following:

Theorem 6.1. Let G be a unitary group. Then, for any Scholze–Shin datum
{fµP,stdτ,h } there exists at most one supercuspidal local Langlands correspon-
dence Π for G with a specified set of singly ΠH-accessible representations for
all H.
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In particular, let us define a Scholze–Shin datum {fµP,stdτ,h } as in [You19].
Let us then set ΠMok to be the supercuspidal local Langlands correspondence
associated to an unramified unitary group as in [Mok15]. Then, the results
of [BMY19] and Theorem 3.3 show the following:

Theorem 6.2. Let G be an unramified unitary group. Then, ΠMok is char-
acterized by the Scholze–Shin datum {fµP,stdτ,h } and the set of singly ΠMok-
accessible representations.

6.2 The characterization in the odd orthogonal case

We now discuss the case of odd special orthogonal groups. Let F be a finite
extension of Qp and let n > 1 be an integer. By an odd special orthogonal
group we mean a group G over F of the form SO(V, q) where (V, q) is a
quadratic space over F of odd dimension. We denote by SO2n+1,F the special
odd orthogonal group of the split quadratic space of dimension 2n+ 1 which
is a split group. Moreover, for each n there is precisely one non-split inner
form of SO2n+1,F , and every odd special orthogonal group is an inner form
of some SO2n+1,F . In particular, for any special odd orthogonal group G
one has that G∗ = SO2n+1,F for some n. We call an odd special orthogonal
group unramified if F is unramified.

Let us denote by µn the unique non-trivial minuscule cocharacter of
SO2n+1,F . We then have the following result:

We observe that every special odd orthogonal group is good:

Proposition 6.3. Let G be an odd special orthogonal group. Then, G is
good.

Proof. Since G being good depends only on G∗, and G∗ = SO2n+1,F for
some n we may assume that G = SO2n+1,F . By [GGP12, Theorem 8.1],
we can recover ψ from r ◦ ψ where ψ any admissible homomorphism ψ :
WF → Sp(2n)(C) and r is the standard representation. Let us then note
that G satisfies (Mu) relative to {µ} since Ĝ = Sp2n(C) and r−µ = r.
However, to prove that G is good we must show that H satisfies (Mu) for
every elliptic hyperendoscopic group H of G. But, since every such elliptic
hyperendoscopic group of G is a product of odd special orthogonal groups
(e.g. by [Wal10, §1.8]) we are done.

As noted in the above proof, every elliptic hyperendoscopic H group of
G, an odd special orthogonal group, is a product of odd special orthogonal
groups. Let us write

H = SO2n1+1,F × · · · × SO2nk+1,F

denote by µH the cocharacter

µn1 × · · · × µnk
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of H.
Then, we obtain the following:

Theorem 6.4. Let G be an odd special orthogonal group. Then, for any
Scholze–Shin datum {fµHτ,h } there exists at most one supercuspidal local Lang-
lands correspondence Π for G with a specified set of singly ΠH-accessible
representations for all H.

We end by remarking to what extent one might hope that the result
Theorem 6.2 extends to the case of odd special orthogonal groups. We
begin by noting that a construction of the local Langlands correspondence
for odd special orthogonal groups is complete by [Art13]. Moreover, the
works of Arthur and [Tai19] prove the global multiplicity formula results.
Such multiplicity results play a pivotal role in the proof in [BMY19] that
Mok’s Langlands correspondence for unramified unitary groups satisfies the
Scholze–Shin equations for the data {fµP,stdτ,h } from the last section.

Moreover, there are well-studied Shimura data associated to the odd
special orthogonal groups over number fields (see [Zhu18]). The cocharacter
associated to this Shimura datum is µn. In [You19] there are constructed
functions fµHτ,h which serve as candidate Scholze–Shin data. Combining this
geometric input with the aforementioned results of Arthur and Taïbi it then
seems conceivable to prove that Arthur’s local Langlands correspondence for
unramified odd special orthogonal group satisfies the Scholze–Shin equations
relative to the functions in [You19]. This would then allow one to prove the
analogue of Theorem 6.2 for unramified odd special orthogonal groups.
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