
Notes for GL2(A∞Q )-reps representations

1 Motivation

In this last note we explained what types of representations of GL2(Qp) were important to us (the irre-
ducible+smooth/irreducible+admissible) ones. We said as a motivating factor for this that we were interested
in studying ‘representations’ of GL2(AQ) (where, again, we remark that these are not honest representations
of GL2(AQ) but ((gl2)C, O2(R)) × GL2(A∞Q )-modules) and, in particular, how these (conjecturally) related
to 2-dimensional Galois representations of GQ.

Now, going from representations of GL2(Qp) straight to GL2(AQ)-reps is a large leap, especially because
the complicating advent of ((gl2)C, O2(R))-modules. So, instead of jumping straight from the purely local
picture to the global picture we instead take an intermediate route and study representations of GL2(A∞Q ).
These have the advantage that, formally, they are much like the case of representations of GL2(Qp)—this is
because GL2(A∞Q ) is a TD group.

That said, this intermediary step is not one purely of metered convenience—it’s not just so we don’t get
overwhelmed with the full definition of a GL2(AQ)-representations—there is serious, valuable intuition about
the classic theory of modular forms contained in the study of GL2(A∞Q )-representations. Particularly, one
can use this representation theoretic perspective to illuminate the definition of Hecke operators (which, upon
a first encounter, seem somewhat. . . unmotivated) and explain what precisely is the intrinsic significance of
phrases like ‘Hecke eigenform’ and ‘newform’.

2 Hecke algebras

2.1 Basic definition

One thing that we neglected to discuss in the last note is the notion of Hecke algebras which are an invaluable
tool in the study of smooth representations of TD groups. The idea is simple through the following analogy:
Hecke algebras are to TD groups as group algebras are to finite groups. Namely, the Hecke algebra H (G)
of a TD group G is made so that, essentially Repsm(G) = Modsm(H (G)) where the superscript sm means
‘smooth’ (we’ll explain what a smooth H (G)-module is shortly).

So, without further adieu, let G be a TD group. We can then glibly define H (G) to be the convolution
algebra of bi-invariant (under some compact open K ⊆ G) measures on G. But, once we fix a Haar measure
µ on G (which we do!) we can write it down in more down-to-earth terms. Namely, we define the Hecke
algebra of G, denoted H (G), to be the C-space C∞c (G) of compactly supported locally constant functions
f : G→ C with the obvious addition and multiplication given by convolution:

(f1 ∗ f2)(g) =

∫
G

f1(x)f2(x−1g)dµ

for f1, f2 ∈ C∞c (G).

Remark 2.1: The identification of H (G) with bi-invariant measures on G follows, essentially, from the
Radon-Nikodym theorem—although there is probably a simpler proof here. �

We note that if G is not compact then H (G) is not necessarily unital. Indeed, if G is compact then a

unit is certainly given by
1

µ(G)
1G. Now while this element obviously won’t work for general G (one reason,

amongst many, is that 1G is then not compactly supported) it’s maybe slightly non-obvious whether H (G)
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is unital. That said, one can confirm one’s suspicion—H (G) is indeed unital if and only if G is compact.
This non-unitalness in general makes module theory over H (G) slightly more nuanced.

Now, if K is a compact open subset of G we denote by H (G,K) ⊆ H (G) the subalgebra of those
compactly supported locally constant functions f : G → C which are bi-invariant under K (i.e. invariant

under right or left multiplication by K). Note that H (G,K) is a unital algebra with unit
1

µ(K)
1K . Indeed,

if f ∈H (G,K) then (
1

µ(K)
1K ∗ f

)
(g) =

∫
G

1

µ(K)
1K(x)f(x−1g)dµ

=
1

µ(K)

∫
K

f(x−1g)dµ

=
1

µ(K)

∫
K

f(g)dµ

= f(g)

and similarly for right multiplication by
1

µ(K)
1K .

Now what makes the study of H (G)-modules reasonable is that while it is not unital (in general) it is a
colimit of unital things. Namely, we claim the following:

Theorem 2.2: Let G be a TD group. Then

H (G) = lim−→H (G,K)

where, of course, if K ⊆ K ′ then H (G,K ′) ⊆H (G,K).

Proof: Indeed, this requires just showing that if f : G→ C is compactly supported and locally constant then
f is bi-invariant by some compact open of G. To see this, note that for each point x ∈ Supp(f) w we can find
a neighborhood of f where f is constant. But, a neighborhood basis of x is (since G is TD) given by right
translations by compact open subgroups. Thus, for each x there is some compact open Kx such that f |xKx

.
Since Supp(f) is compact we can cover it by finitely many xKx’s and thus, evidently, the intersection over
this set of finitely many Kx is a compact open subgroup for which f is right invariant. Do the same thing
for left invariance and intersect them—this shows the claim! �

In fact, we can even describe H (G,K) ⊆ H (G) in a purely algebraic fashion. Namely, for notational

convenience, let us set eK :=
1

µ(K)
1K for every compact open K ⊆ G. We then have the following simple

proposition that we leave to the reader:

Theorem 2.3: Let f ∈H (G). Then, f is right K-invariant if and only if f∗eK = f and f is left K-invariant
if and only if eK ∗ f = f .

From this we deduce that H (G,K) is precisely eKH (G)eK . Thus, H (G) is a (possibly) non-unital
algebra with a family of idempotents {eK} such that

H (G) =
⋃
K

eKH (G)eK

making H (G) a so-called idempotented algebra. The algebra of idempotented algebras, in particular their
module theory, is largely translatable from the classical theory.

2.2 Relationship to representation theory

Now that we have a bare-bones understanding of Hecke algebras we can explain why they’re of interest to
us—how they are related to representation theory. We intuited at the beginning of this section that they
should play a role analogous to that played by the group algebra in the case of finite groups.

One reason that this should not be surprising in the slightest is the following:
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Example 2.4: Let G be a finite group (considered as a TD group with the discrete topology). Then,

H (G) = C[G]. u

But, beyond this literal connection we can actually justify the claim Repsm(G) = Modsm(H (G)) in
general. In particular, let us call a H (G)-module M smooth if H (G)M = H (G). Note that while this is
immediate in the module theory of unital algebras (since 1M = M !) this is not at all a vacuous condition
here. That said, one of the key points of noticing that H (G) is a idempotented algebra is to conclude that,
in fact, H (G) itself is smooth. Namely, if f ∈ H (G) then f ∈ H (G,K) for some K and thus eK ∗ f = f
so that f ∈H (G)H (G).

Thus, with this setup we can state the desired result as follows:

Theorem 2.5: Let G be a TD group. Then, there is a natural equivalence of categories Repsm(G) ∼=
Modsm(H (G)).

Here, of course, Repsm(G) denotes the category of smooth G-representations of G (a la the last note) and
Modsm(H (G)) denotes the category of smooth H (G)-modules.

Of course, it’s not overwhelmingly useful to know this equivalence in the abstract, and so we’d like to
make more explicit precisely what the equivalence is. So, let’s suppose that V is a smooth G-representation.
We then define the structure of H (G)-module on V , described as a homomorphism π : H (G) → End(V ),
as follows:

π(f)(v) :=

∫
G

f(g)g(v)dµ (1)

While this seems a bit scary looking it’s really quite tame. Namely, since V was assumed smooth we know
that stab(v) ⊆ G is open and so contains a compact open subgroup K1. Moreover, since f ∈H (G) we know
that f is bi-invariant for some compact open subgroup K2 of G. Let K := K1 ∩K2. Then, one can check
that

π(f)(v) = µ(K)
∑
i

f(gi)gi(v) (2)

if giK is a disjoint open cover of Supp(f).
Conversely, suppose that V is a smooth H (G)-module (again presented as a homomorphism π : H (G)→

End(V )) we then want to produce a smooth G-module V . Set, not shockingly, V (as an underlying C-space)
to be just itself and let us define the G-module structure on V as follows. So, if v ∈ V then the fact that V
is a smooth H (G)-module implies that v = π(f)(w) for some w ∈ V and f ∈H (G). Suppose that K ⊆ G

is compact open such that f ∈H (G,K). Then we define gv := π

(
1

µ(K)
1KgK

)
(v) which one can quickly

check is, indeed, well-defined.
Let us just quickly verify that these operations are inverse to one another. Namely, suppose that V is a

G-module. Then, we want to verify that π(1KgK)(v) = g(v). That said, by (2) we have that

π

(
1

µ(K)
1KgK

)
)(v) = µ(K)

1

µ(K)
1KgK(g)g(v) = g(v)

as desired. Checking the other side of the inverse is exactly the same.
From this more explicit description of the equivalence we can easily suss out the following:

Theorem 2.6: Let G be a TD group, V a smooth G-rep, and K ⊆ G a compact open subgroup. Then, the
following holds:

1. The operator π(eK) is the projection operator V → V K .

2. The representation V is admissible if and only if for all f ∈ H (G) the endomorphism π(f) of V has
finite rank.

3. The G-stable subspaces of V are the H (G)-submodules of V .

4. The C-subspace V K ⊆ V is a H (G,K)-module.
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Essentially what we see from this theorem is that since V =
⋃
K

V K , V K is a H (G,K)-module, and

H (G) = lim−→H (G,K) that a smooth G-module V is nothing more than a ‘compatible family’ of H (G,K)-
modules, and that admissibility is that each of these H (G,K)-modules are finite dimensional (over C). In

particular, the fact that H (G) = lim−→H (G,K) is essentially the equality V =
⋃
K

V K with V = H (G)

acting on itself (the regular representation).

Smooth GL2(A∞Q )-reps and a baby Flath’s theorem

We would now like to begin our study, in earnest, of the admissible irreducible representations of the TD
group GL2(A∞Q ). The key observation is that such representations are ‘built from’ local pieces. To make this
precise we need to make a brief detour to discuss restricted tensor products. Of course, as mentioned in the

last note, the fact that GL2(A∞Q ) =
∏
p

′
GL2(Qp) should mean that its smooth irreducible representations

should decompose as V =
⊗
p

′
Vp with Vp a smooth irreducible representation of GL2(Qp). Of course, step

one to understanding why this is true is to understand what
⊗
p

′
even means.

So, let us suppose that S is some set of indices and suppose that for every s ∈ S we have a C-space Vs.

Let us define for a finite subset T ⊆ S the space VT :=
⊗
t∈T

Vt. What we essentially want to define
⊗
s

′
Vs

to be is lim−→
T

VT as T runs over the finite subsets of S. Of course, for this work then we need for T ′ ⊇ T a

map VT → VT ′ . So, let us suppose that for all s ∈ S we’ve fixed vectors 0 6= v0
s ∈ Vs. Then, let’s define the

map VT → VT ′ to be v 7→ v ⊗ v0
s1 ⊗ · · · ⊗ v

0
sm if {s1, . . . , sm} = T ′ − T . We then set, rigorously,

⊗
s

′
Vs to

be lim−→
T

VT . We call it the restricted tensor product of the family {Vs}s∈S .

Remark 2.7: The above can be made slightly nicer by choosing an ordering on T for, as of now, we’ve not
specified the order of the tensor products in VT . This is not a detail we’ll concern ourselves with. �

Since this will also be useful for us let us consider how we might define restricted tensor products of
algebras. Namely, let us now assume that for each s ∈ S we’re given instead of just a C-space Vs a C-algebra

As. We then want to define
⊗
s

′
As in the exact same way but, of course, we’d like to get an algebra out

of it. The key is that we can’t arbitrarily choose v0
s ∈ As else the maps AT → AT ′ won’t be multiplicative.

What we need is that each v0
s is actually an idempotent (not zero of course). So, let’s suppose that we are

given idempotents e0
s ∈ As for all s. Then, we can define the restricted tensor product algebra

⊗
s

′
As as

lim−→
T

AT which is, indeed, a C-algebra since each AT → AT ′ is a map of C-algebras.

Before we give an example, let us point out the obvious—what the universal property of this restricted

tensor product algebra/vector space is. A C-algebra homomorphism
⊗
s

′
As → B (as written on the tin of

being a tensor product/colimit) is, for every finite T , a set of maps ft : At → B, which is compatible as T
gets larger. In essence, the restricted product of algebras is something like an infinite coproduct (where a
map from it is just a collection of maps) but even though all the algebras As are taken into account, one only
sees finitely many algebras at a given time—one cannot specify the images of as ∈ As for infinitely many s.

So, what is an example of an algebra that is like ‘putting together a bunch of algebras, but only finitely
many variables are involved at a given point’:

Example 2.8: The polynomial algebra C[T1, T2, . . .] in infinitely many variables is
⊗
n

′
C[Tn] where the

idempotents we take are, not shockingly, the identity element. In general the restricted tensor product of
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An := C[Ti,n]/(fi,j) should be something like C[{Ti,n}i,n]/({fi,j}i,n). u

Now we’d like to understand how one can use restricted tensor products to understand representations of
TD groups obtained as restricted direct products. The connection is somewhat clear. Namely, let’s suppose

that G is a TD group and we can write G =
∏
s

′
Gs with TD groups Gs with respect to some compact open

subgroup Hs ⊆ Gs. Note then that if we start with representations Vs of each Gs we’d like to say that⊗
s

′Vs is a representation of Gs. Now, of course, for each finite T ⊆ S we have that VT is a representation of

GT :=
∏
t∈T

GT ×
∏
t/∈T

Ht and since G = lim−→
T

GT we seem golden. Of course, this is only if under the transition

maps GT → GT ′ we have that the associated maps VT → VT ′ are intertwining. A little thought shows that

this is true precisely when the vectors vs0 we’ve chosen are Hs stable for all S. In this case we see that

′∏
s

′
Vs

is a G-rep.
Note that since we need only need to have Hs ⊆ Gs given for all but finitely many s one sees that the

discussion of the previous discussion extends to the case when we ignore finitely many s ∈ S, and thus we
can ignore picking v0

s ∈ V Hs
s for finitely many s.

We now come to statement of Flath’s theorem:

Theorem 2.9 (Baby Flath): Let V be an irreducible admissible representation of GL2(A∞Q ). Then, there

exists a unique decomposition V ∼=
⊗
p

′
Vp where Vp is an admissible irreducible representation of GL2(Qp)

and Vp is unramified for almost all p (recall that this means that V
GL2(Zp)
p 6= 0).

One should note that, while we have been sloppy suppressing the dependence on the vectors {v0
s} in the

notation
⊕
s

′
Vs, it is now actually important. Namely, Theorem 2.9 is stated in such a way that it seems

to not depend on a chocie of vectors (up to isomorphism) and this is, indeed, the case.
That said, the justification of this result requires a bit of work. The key is that we must take our

vectors vp0 ∈ V
GL2(Zp)
p , and we do so only when V

GL2(Zp)
p 6= 0 (which by the statement of Flath’s theorem is

non-zero for all but finitely many p). Thus, any ambiguity in the statement of Flath’s theorem comes from
the non-specification of how we choose these vp0 and whether this restricted tensor product depends on this
choice.

Thankfully, it does not depend on such a choice. The key is the following:

Theorem 2.10 (Baby Satake isomorphism): Let Tp := 1K1
and Sp := 1K2

where

K1 = GL2(Zp)

(
1 0
0 p

)
GL2(Zp)

and

K2 = GL2(Zp)

(
p 0
0 p

)
GL2(Zp)

Then

H (GL2(Qp),GL2(Zp)) = C[Tp, Sp, S
−1
p ]

In particular, we see that H (GL2(Qp),GL2(Zp)) is commutative. Now, if V
GL2(Zp)
p 6= 0 then, since Vp is

irreducible, this H (GL2(Qp),GL2(Zp))-module (by Schur’s lemma) must be 1-dimensional. Thus any two
choices of v0

p differ by a constant, and one can then show that the isomorphism class of the restricted tensor
product is unaffected by this choice.

We will not prove Flath’s theorem here referring the interested reader to The Corvallis Proceedings and
Flath’s orginal article. The result, while deep, is fairly easy to prove relying mostly on basic algebra.
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Remark 2.11: Note that the irreducibility of V in Flath’s theorem is pivotal. Namely, one cannot attempt
to decompose a general representation of GL2(A∞Q ) into local factors. In particular, one cannot apply this to
the space A0(GL2) of GL2-automorphic forms to obtain ‘local automorphic forms’. This is somewhat deep
problem, to find what a ‘local analogue’ of automorphic forms should be. �

Let us end this section by stating what is, morally, an equivalent statement of Theorem 2.9 but on the
level of Hecke algebras (but it is easier—it’s actually a first step into proving Flath’s theorem):

Theorem 2.12: There is an isomorphism of C-algebras

H (GL2(A∞Q )) ∼=
⊗
p

′
H (GL2(Qp))

here the idempotent we take each H (GL2(Zp)) is 1GL2(Zp) (where, implicitly, we’ve normalized the Haar
measure on GL2(Qp) such that GL2(Zp) has measure 1).

Moreover, suppose that U ⊆ GL2(A∞Q ) is a compact open with factorization U =
∏
p

Up. Then

H (GL2(A∞Q ), U) ∼=
⊗
p

H (GL2(Qp), Up)

3 Connection to modular forms

3.1 Basic setup

Let us now give a non-trivial examples of smooth GL2(A∞Q )-representations and, along the way, clarify the
basic theory of modular forms.

The first step is to generalize the notion of a modular form of weight k and level Γ (for Γ a congruence
subgroup) to work with level any compact open subgroup U ⊆ GL2(A∞Q ). The reason why this should
seem like a generalization (and we’ll see later is literally a generalization) is that the congruence subgroups
Γ ⊆ SL2(Z) are precisely subgroups of SL2(Z) of the form U ∩ SL2(Z) with U ⊆ GL2(A∞Q ) compact open.

So, without further delay let us define such a modular form. Namely, let us say that a function

f : h± ×GL2(A∞Q )→ C

(where h± is the upper and lower half-planes) is a modular form of weight k and level U , where U ⊆ GL2(A∞Q )
is compact open, if it satisfies the following conditions:

MF.1 For each fixed g ∈ GL2(A∞Q ) we have that f(h, g) is a holomorphic function h± → C.

MF.2 For each γ ∈ GL2(Q) we have that

f(γh, γg) = deg(γ)−1j(γ, z)kf(h, g)

where GL2(Q) acts on h± by fractional linear transformation and on GL2(A∞Q ) diagonally, and

where j

((
a b
c d

)
, z

)
= cz + d.

MF.3 For all u ∈ U we have that f(h, gu) = f(h, g).

MF.4 For all fixed g ∈ GL2(A∞Q ) we have that lim
h→i∞

f(h, g) exists.

Condition MF.4 can be rephrased in two useful ways. First, it is equivalent to say that (again for each
fixed g) for every A > 0 there is a CA > 0 and N ∈ N such that |f(h, g)| 6 CA Im(h)N when |Re(x)| 6 A

and Im(h) � 0—in other words, that f(g, h) is of moderate growth. Second, note that

(
1 N
0 1

)
∈ U for

N � 0 which shows that f(h, g) = f(h+N, g) so that f still has a Fourier expansion

f(h, g) =
∑
n∈Z

an exp

(
2πih

N

)
(3)
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and we require that an = 0 for n < 0.
If, in addition, we assume that for each g we have that lim

h→i∞
f(h, g) = 0 then we say that f is a cuspform

of weight k and level U . Equivalently, we can say that, for each fixed g, the function f(h, g) is of rapid decay
meaning that for each fixed A and k ∈ N, there is a CA,k such that |f(h, g)| 6 CA Im(h)−k for |x| 6 A and
Im(h)� 0. Finally, we can require that for each fixed g the coefficient a0 in (3) is 0.

One can think about what we’ve done above as follows. It’s a common first exercise in the study of
automorphic forms to explain how one can inflate functions f : h → C to functions f : SL2(R) → C which
begins one on the journey of understanding ‘automorphic forms for SL2(R)’ and how they generalize classic
modular forms. Here we have, instead, inflated our modular forms to live on non-archimedean groups (or
rather, those that have a large non-archimedean component) and left the archimedean factor alone. This
is why, for instance, prescriptions of how O2(R) acts are not necessary—we’ve done no inflating on the
Archimdean factor.

One of the powers of this approach is that it allows us to unite the study of modular forms and cusp
forms across different weights together. Namely, let us denote for each compact open U the C-space Mk(U)
of modular forms of weight k and level U and similarly we denote cuspforms by Sk(U). Note that if U ′ ⊇ U
then evidently Mk(U ′) ⊆Mk(U) and Sk(U ′) ⊆ Sk(U). So, let us define the following:

Mk := lim−→
U

Mk(U)

Sk := lim−→
U

Sk(U)

And note that GL2(A∞Q ) now actually acts on these spaces. Specifically, if g0 ∈ GL2(A∞Q ) and we define, as
per usual, the function g0f by the rule

(g0f)(h, g) = f(h, gg0)

then for any f ∈ Mk(U) we have that g0f ∈ Mk(g−1
0 Ug0) and if f ∈ Sk(U) then g0f ∈ Sk(g−1

0 Ug0). Thus,
while we can’t see something like a GL2(A∞Q )-action at a fixed level (we’ll see shortly what type of action we
really get there) once we unify the weight k forms across all levels the GL2(A∞Q ) action becomes apparent.

Before we continue, let us prove a small lemma that will show in many cases that Mk(U) and Sk(U) are
familiar objects:

Theorem 3.1: Let U ⊆ GL2(Ẑ) be a compact open. Suppose moreover that det(U) = Ẑ×. Then, if Γ :=

SL2(Z) ∩ U then Γ is a congruence subgroup and the map f 7→ f(h, 1) defines a bijection Mk(U)
≈−→Mk(Γ)

and Sk(U)
≈−→ Sk(Γ).

This theorem is fairly simple, but let us remark on the inclusion of the condition det(U) = Ẑ×. Recall
that the algebraic group GL2 does not satisfy strong approxmation. Thus, to prove such a theorem we need
to bootstrap from strong approximation for SL2 and the condition that det(U) = Ẑ× essentially allows us
to make the equality

GL2(A∞Q )/U = SL2(A∞Q )/(U ∩ SL2(A∞Q ))

which is what makes this possible.

Remark 3.2: Of course, this then wonders why we’re not working with just SL2 instead of GL2 where the
above theorem wouldn’t need such qualifications. There are two answers. First is, well, we’re interested
in GL2(A∞Q ) (because it’s on the seminar organizer’s qualifying exam). Secondly, it’s GLn that much of
what we say extends to. Namely, we’ll use below heavily the fact that GL2 has the strong multiplicity one
property. This also holds for GLn. That said, while it holds for SL2 it does not hold for SLn for n > 2. �

In particular, let’s apply Theorem 3.1 to some familiar situations. Namely, let us consider the following
open subgroups of GL2(Ẑ):
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U(N) :=

{(
a b
c d

)
∈ GL2(Ẑ) : a ≡ 1 mod N, b ≡ c ≡ 0 mod N

}
U1(N) :=

{(
a b
c d

)
∈ GL2(Ẑ) : a ≡ 1 mod N, c ≡ 0 mod N

}
U0(N) :=

{(
a b
c d

)
∈ GL2(Ẑ) : c ≡ 0 mod N

}
Then these all satisfy det(U) = Ẑ×. Moreover, one can check that

U(N) ∩ SL2(Z) = Γ(N)

U1(N) ∩ SL2(Z) = Γ1(N)

U0(N) ∩ SL2(Z) = Γ0(N)

and thus we have equalities

Mk(U(N)) = Mk(Γ(N)) Sk(U(N)) = Sk(Γ(N))

Mk(U1(N)) = Mk(Γ1(N)) Sk(U1(N)) = Sk(Γ1(N))

Mk(U0(N)) = Mk(Γ0(N)) Sk(U0(N)) = Sk(Γ0(N))

thus connecting this theory back to the most basic cases of modular forms.

Remark 3.3: Be careful! Note that a more natural choice for compact open subgroups of GL2(A∞Q ) giving

the Γi(N) would have been Γ̂i(N)—their profinite completions. These are certainly perfectly fine compact
open subgroups of GL2(A∞Q ) but they do not satisfy the surjectivity condition for the determinant, thus
one cannot directly relate modular forms of their level to modular forms (in the classical sense) of level

Γi(N). In particular, since the canonical neighborhood basis of the identity is Γ̂(N) note that we cannot,
a priori, uniformize all ‘generalized modular forms’ (with levels compact opens of GL(A∞Q )) in terms of
classical modular forms.

Namely, it’s not true that we can describe Mk and MK as a colimit of classical modular form spaces.
This should be clear since such a space would not have a GL2(A∞Q ) action (just a GL2(Ẑ) action!). So, we
have also really gained something by passing to this more general level. �

So let us begin by making the following two observations which, while not overly deep, are also not
extremely obvious:

Theorem 3.4: For all U ⊆ GL2(A∞Q ) compact open the C-space Mk(U), and thus Sk(U), are finite-
dimensional.

Proof (idea): Just like in the classical case one can write down a (possibly disconnected) compact Riemann
surface for which Mk(U) and Sk(U) are sections of a line bundle, thus finite-dimensional. �

We also need the following:

Theorem 3.5: There is a natural inner product on Sk by which GL2(A∞Q ) acts unitarily (it’s, up to a
character twist, something like the Peterson inner product).

So, using Theorem 3.4 we can actual say something somewhat surprising/deep. Namely, the repre-
sentations Mk and Sk of GL2(A∞Q ) are admissible! Indeed, the fact that they are smooth is clear. If
f ∈ Mk(U) ⊆ Mk then f is fixed by U and thus stab(f) is open (the same goes for Sk). And, to see it’s
admissible we note that for each compact open U we have that

MU
k = Mk(U), SUk = Sk(U)

which are finite-dimensional by Theorem 3.4.
Now that we know thatMk and Sk are reasonable representations of GL2(A∞Q ) (they are admissible) we

can hope to try and understand their admissible irreducible subrepresentations/subquotients. To this end, let
us make the following definition. A modular representations of weight k (for GL2) is an irreducible admissible
subquotient of Mk. A cuspidal representation of weight k (for GL2) is an admissible subrepresentation of
Sk.
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Remark 3.6: Note that in our definition of cuspidal representation of weight k we said subrepresentation
instead of subquotient. One can show that the two notions are equivalent. �

Thus, the rest of this note will be devoted to understanding precisely the cuspidal representations of
weight k.

3.2 Hecke operators

Before we do this directly, it’s helpful (and extremely illuminating!) to first understand how the Hecke oper-
ators in the classical setting relate to the Hecke algebra in this setting of smooth GL2(A∞Q )-representations.

So, we said earlier that the individual levels Mk(U) and Sk(U) did not possess a GL2(A∞Q )-action. So,
then, what action do they have? This is a little cumbersome to state in the language of representations but if
we think of Mk and Sk as smooth H (GL2(A∞Q ))-modules the picture suddenly becomes much more sunny.

Namely, Mk(U) = MU
k is precisely a H (GL2(A∞Q ), U)-module and similarly for Sk(U). Thus, the action

that actually exists at a finite level is just the action of the U bi-invariant Hecke algebra H (GL2(A∞Q ), U).
So, in particular, let us think about the case of

Mk(Γ1(N)) = Mk(U1(n)) =MU1(N)
k

and similarly for Sk(Γ1(N)). Namely, by the above analysis this should carry an action of H (GL2(A∞Q ), U1(N)).
So, for starters, what precisely does this algebra look like? Well, using Theorem 2.12 and Theorem 2.10 we
can give a pretty satisfactory answer to this question.

Namely, let us begin by noting that we can write

U1(N) =
∏
p-N

GL2(Zp)×
∏
p|N

U1,p(N)

where, here,

U1,p(N) :=

{(
a b
c d

)
∈ GL2(Zp) : c ≡ 0 mod pvp(N), a ≡ 1 mod pvp(N)

}
Then, from Theorem 2.12 we deduce that

H (GL2(A∞Q ), U1(N)) =
⊗
p-N

′
H (GL2(Qp),GL2(Zp))⊗

⊗
p|N

H (GL2(Qp), U1,p(N))

That said, we know from Theorem 2.10 that

H (GL2(Qp),GL2(Zp)) = C
[
Tp, Sp, S

−1
p

]
and so combining this with Example 2.8 we deduce that

H (GL2(A∞Q ), U1(n)) = C[
{
Tp, Sp, S

−1
p

}
p-N ]⊗

⊗
p|N

H (GL2(Qp), U1,p(N))

Thus, we see that for each p - N we get operators Tp and Sp on Sk(Γ1(N)) = SU1(N)
k . The thing we’d hope

is, in fact, true:

Theorem 3.7: Under the identification Sk(Γ1(N)) = SΓ1(N)
k the operator Tp acts as p1− k

2 T c
p where T c

p the
classical Hecke operator and Sp acts as multiplication by χ(p) if χ is the Nebentypus for f .

Of course, one can extend the above result to the Hecke operators at primes p | N but that requires more
work (in particular, Baby Satake [or Papa Satake] don’t apply).

Let’s spell out the philosophical implication of all of this. When one is first introduced to Hecke operators,
unless they had a particularly good teacher they probably seemed unmotivated and forced. One usually tries
to justify them as ‘averaging operators’ used to prove things about Fourier coefficients. But, the above tells
us that if we pay attention to the GL2(A∞Q )-action on modular forms (the thing that we care about from a
representation theoretic perspective) then the Hecke operators are forced on us as being the real ‘important
part’ of this GL2(A∞Q ) action. They don’t seem random anymore.
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Remark 3.8: One can also understand the Hecke operators naturally from a geometric point of view.
Namely, the singular cohomology of any symmetric space has Hecke operators coming from the natural
Hecke correspondences of the family of spaces obtained by quotienting this symmetric spaces by congruence
subgroups. This is then connected to modular forms via the Matsushima formula and then one obtains,
again, the classical Hecke operators. �

3.3 Decomposition Sk
So, in this section we’d like to understand how precisely representations of Sk look—what cuspidal repre-
sentations of weight k look like.

The first key observations if the following:

Theorem 3.9: We have an (algebraic) decomposition

Sk =
⊕

V cusp.
rep. wght k

V nV (4)

This is essentially due to Theorem 3.5. Also, note that since Sk is admissible we know that nV is finite
for all V .

Now, the first big result that we will need (and blackbox heavily) is the following:

Theorem 3.10 (Strong multiplicity 1 for GL2): Suppose that V and W are cuspidal representations
of weight k embedded into Sk. Then, if Vp ∼= Wp for almost all p (where Vp and Wp are as in Theorem 2.9)
then V = W .

In other words, for all V we have that nV = 1 in (4) and for V and W occuring in (4) we have that
V = W if and only if Vp ∼= Wp for almost all p. This is an extremely powerful and surprising result and will
essentially be the key to all of what we say after.

Remark 3.11: Note that strong multiplicity 1 is a truly global phenomemon. For example, doing the
Archimedean analogue of the decomposition in (4) gives arbitrarily high multiplicities. �

So, we now come to what is, in my estimation, one of the most beautiful theorems in the basic theory
of automorphic forms/representations which clarifies much of the basic theory. But, before we come to the
theorem directly, let us first notate for f ∈ Sk(U) the orbit GL2(A∞Q )f ⊆ Sk by πf .

We then have the following:

Theorem 3.12: For f ∈ Sk(Γ1(N)) the subrepresentation πf ⊆ Sk is irreducible if and only if f is an
eigenform. Moreover, for every cuspidal representation V of weight k we have that V ∼= πf for some
eigenform f ∈ Sk(Γ1(N)) (for some N).

Proof (Idea): If πf is irreducible then we can, by Theorem 2.9, decompose it as
⊗
p

′
Vp and for almost all p

we have that Tp acts by a character, and thus f must be an eigenvalue for Tp.
To see that πf is irreducible if f is an eigenform we decompose πf into irreducibles and note that for

each irreducible factor its pth Flath component needs to have p
k
2−1λp(f) (where λp(f) is the eigenvalue of

T c
p on f) as the eigenvalue for Tp. By strong multiplicity 1 this implies that all the irreducible factors are

equal and, again, implies that there must only be one irreducible factor.
The fact that all show up as πf is somewhat obvious. Namley, if V is a cuspidal representation of weight

k we know that V = GL2(A∞Q )f for any non-zero f ∈ V . If we can show that f ∈ Sk(Γ1(N)) then necessarily
f is an eigenform since the Tp in the local Hecke algebra must act as a character. Thus, the oomph is showing
that we can take f ∈ Sk(Γ1(N)). This we don’t do here. �

Thus, we see that the reason we care about eigenforms is that, well, they are the irreducibles! They are
the ‘important parts’ the ‘generating set’ of the whole of cuspforms.
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We end this section by explaining how newforms (which is short for new normalized Hecke eigencuspform)
enter the picture. The basic idea is simple. Namely, we now know that in the decomposition (4) each V is
some πf . Thus, we’d like rewrite this decomposition that form. But, the question is the following: what
indexing set of f ’s should it run over? Namely, there are many eigenforms with the same eigenvalues (e.g.
∆(z) and ∆(2z) for ∆ the usual discriminant form of weight 12 and level SL2(Z)). The key is that two
newforms which have the same Hecke eigenvalues are equal.

Thus, the point is that each πf has a canonical representative given by a newform (and all other Hecke
eigenforms are obtained from this on by a GL2(A∞Q )-action). Thus, we can rewrite the decomposition (4) as
follows:

Sk =
⊕

f newform

πf (5)

which I find exceedingly beautiful and illuminating, explaining why eigenforms, and in particular newforms,
are so important.

3.4 Local factors and L-functions

We end this note by trying to tie the representations πf , with f a newform for Γ1(N) (for some N), together
with the material from the last note. Namely, by Theorem 2.9 we know that

πf ∼=
⊗
p

′
Vp,f

where Vp is an admissible GL2(Qp)-representation, and so one might begin to wonder what these are.
Well, one case this is clear is in the unramified case. Namely if p - N then it’s fairly clear from our

analysis above that Vp,f must be unramified and thus, from our discussion last time, an irreducible principle
series P (χ1, χ2) and we know that, up to reordering, χ1 is (in the parlance of last time) the character

(p1− k
2 ap(f), 0, 1) and χ2 the character (χ(p), 0, 1).

What happens for primes p | N is more complicated. Namely, one can show that in this case one
never gets a character and thus one is left with either an irreducible (ramified) principal series, a special
representation StGL2 , or a supercuspidal. Loeffler and Weinstein have a paper detailing an algorithm to
decide which is which.

Regardless, one thing that one can prove abstractly (without knowing the specific identity of the lo-
cal representations Vf,p) is that for every prime p one has that Lp(f, s) = Lp(πf , s) where, by definition,
Lp(πf , s) := L(Vp,f , s) where we defined last time the definition of the L-function of (non-character) irre-
ducible admissible representation of GL2(Qp).

Thus, not only do newforms intimately factor into the study of representations of GL2(A∞Q ) but their
native L-functions agree with the ‘automorphic L-function’ obtained by studying their local representations.
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