
Galois groups of local and global fields

The goal of the talk today is to try to better understand the fine grain structure of the groups GK when
K is either a local (usually p-adic) field or a global field (usually a number field). A special emphasis will
also be paid to how these two types of Galois groups interact, and how this interaction can be used to give
a more fruitful study of the groups individually.

We also wish to emphasize, due to its importance later, why the main difficulty of the local factor GQp

is in the subgroup PQp
—the wild ramification group. We will try to give examples of how wild ramification

can manifest itself in concrete geometric complications.

Some geometric motivation

One of the main themes/goals of this note is to discuss how every Galois group Gal(E/F ), where F is a
number field, comes equipped with a bunch of conjugacy classes of “local data” in the form of Galois groups
of local fields. While this is certainly technically nice, it is somewhat difficult to have intuition about what
this is really doing and, in particular, what this means “geometrically” if anything at all.

The point of this first section is to give a very explicit, concrete example of a Galois group which can
be studied by its local constituents in the same way that GQ can be studied by its local constituents GQp

.
There will be no argument that in this example these packets of local data are, in a literal geometric sense,
not only extremely intuitive/obvious but actually ‘local’.

After we set up the formal definitions/results of local and global fields we will then revisit this example
attempting to explain how, in a very real sense, the literal geometric local of the below example is the same
notion of local when we talk about local and global fields allowing us, consequently, to transfer our geometric
intuition from the explicit topological example below to the arithmetic example of, say, GQ.

Setting up the geometry

Here we setup our explicit geometric example that we will use later to intuit the role of GQp
in GQ.

The Galois group that we are going to study in this section is the Galois group GC(T ) which, for various
reasons, is extremely simple (this is somewhat disingenuous: a better phrase being “non-mysterious”, or
“given the name of something well-known”). In fact, GC(T ) is the free profinite group on #(C) many
generators. But, this is not important here, what is important is how one can “see” the structure of the
“local factors” and how they contribute to the global picture.

The main observation that shades the study of GC(T ) in a geometric hue is the following:

GC(T ) = lim←−
S⊆P1

C

π̂1(US) = lim←−
S⊆P1

C

πét1 (US) (1)

where S travels over the finite subsets of P1
C and US := P1

C − S. The fundamental group π1(US) here is the

topological one, and the second equality in (1) is just the well-known fact that πét1 (US) = π̂1(US).

Remark 0.1: We are being a little sassy by not picking base points in (1) but since this is obvious, but also
tedious, we ignore it. That said, it IS an important thing to keep track of and we will explain later what the
analogy of not picking the base point in the arithmetic world is. �

The reason for (1) is actually quite simple depending on how hard one wants to think about it. Specifically,
let us give a hand-wavey argument here which, hopefully, will convince the reader, and let those doubters
see Remark 0.2 below.
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To see why an equation like (1) should hold, begin by recalling that there is an equivalence of categories Smooth projective
curves over C

with a map X → P1
C

 ≈−→
{

Finitely generated
extensions of C(T )

}
(2)

given by X → P1
C maps to the induced map on function fields C(T ) ↪→ K(X). Now every non-constant map

X → P1
C is ramified at only finitely many places of P1

C, call that set S. Then, by considering V := X ×P1
C
US

(the preimage in X of US) we get a finite étale cover V → US which, of course, is a finite covering space of US .
Moreover, V → US is Galois (as a covering space) if and only if the corresponding extension C(T ) ↪→ K(X)
is Galois. Thus, with this in mind, one should believe (1) because both sides classify the same thing—GC(T )

classifies the finite Galois extensions of C(T ) and lim←− π̂1(US) classifies the finite Galois covers of all the

possible puncturings of P1
C—but what the previous sentence explains is precisely that these two sets of data

are the same.

Remark 0.2: So, for those unhappy with the above argument here is a slightly more rigorous justification:
see Section 3.4 of Szamuely’s text Galois Groups and Fundamental Groups. �

So, now that we have connected the study of GC(T ) with geometry/topology, let’s try and exploit it by
tapping into our deeply ingrained notions of “zooming in” or “localizing” and how this might break the
study of GC(T ) into simpler local parts.

To this end, let us define for each p ∈ P1
C the subspace Dp to be a “small punctured disk around p”.

The reason for the scare quotes is our current unwillingness to specify precisely how small “small” means.
In fact, we won’t make this specification since, in practice, it doesn’t matter. Namely, if D and D′ are two
small punctured disks around p then for any third small punctured disk D′′ around p contained in both D
and D′ we see that the maps

π1(D)← π1(D′′)→ π1(D′)

are isomorphisms which justifies this snakey phrase “small”—we can make Dp as small as we’d like, and it
won’t affect the fundamental group.

Note then that for each US we get natural maps π1(Dp) → π1(US) (and thus induced maps on their
profinite completion) as follows. If p /∈ S then this map is the zero map. If p ∈ S then we can assume that Dp

is a small enough punctured disk that it is contained entirely within US in which case π1(Dp)→ π1(US) is the
natural inclusion. Regardless, one can see that these maps π1(Dp)→ π1(US) respect the natural system that
occurs by varying S and thus, consequently, we get maps from π1(Dp) into their inverse limit—we get maps

π1(Dp)→ GC(T ) for all p. Of course, consequently, we get maps π̂1(Dp)→ GC(T ). Note, moreover, that this

map is an injection (it’s even an isomorphism when composed with the natural quotient GC(T ) → ̂π1(U{q,p})
for any q 6= p!).

So, we see that the group GC(T ) comes with a natural system of injections{
π̂1(Dp)→ GC(T )

}
p∈P1

C

(3)

which, if we think of GC(T ) as classifying ramified covers of P1
C, are essentially sussing out the complicatedness

of such a cover “near p” or “locally at p”. So, for example, if we are looking at a representation ρ :

GC(T ) → GLn(A) that factors through π̂1(US) with p /∈ S (so the representation only cares about finite

covers unrmamified over p) then, necessarily, π̂1(Dp) is killed by ρ since the topology of covers classified by

π̂1(US) is trivial near p.

Remark 0.3: Note that, as we will mention it again later, that the system of embeddings as in (3) is only
well defined up to conjugacy. Indeed, this is precisely the price we pay by being noncommittal about choosing
a base point—different choices of base point will yield conjugate (in each π1(US)) subgroups. �
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Thus, one might imagine that these injections are somehow the “local constituents” of the Galois group
GC(T ) at every point of P1

C—they are measuring the complicatedness of the Galois group GC(T ) “at p”. This
method of thought is extremely powerful since it allows one to try and study the Galois group of C(T ) or,
equivalently, the finite ramified covers of P1

C, by studying how that cover looks “point-to-point” which allows
us to eliminate a huge amount of the complicatedness of the cover—instead of having worry about a space
like US we instead just have to worry about the tiny punctured disk Dp.

This is precisely the sort of nice geometric picture that we’d like to have when thinking about something
like the Galois group GQ and its local constituents GQp

↪→ GQ. But, before we go into this in more detail,
we give an extended reminder on local and global fields and their Galois groups.

1 Local fields and their Galois groups

1.1 Basic definitions

Somewhat contravariant to the historical point of view, we’d like to start discussing local fields before global
fields. This is largely due to the relative simplicity of this setting compared to the vast, uncharted wilderness
of their global counterparts. In particular, local fields, and their Galois groups, have much simpler to define
structures. These structures then, by the nature of the connection between local and global Galois groups,
transfer to structures on the global Galois groups. But these structures are somewhat less apparent/intuitive
when viewed through a strictly global lens. It is somewhat similar to how global class field theory came
historically first but, in terms of relative complicatedness, and the fact that the global case is “built from
the local cases”, it’s somewhat more logical to begin locally and then move globally.

So, let us start, as we must, with the titular definition of this section: A local field is a non-discrete,
locally compact, Hausdorff field.

It turns out that there are essentially two flavors of such fields. Specifically, let us recall that Qp is the
completion of Q with respect to the absolute value |pnx|p := p−n (if x contains no power of p) and Fp((T ))
is the completion of Fp(T ) with respect to the valuation |Tnf(T )| = p−n (if f(T ) contains no power of T ).
The classification of local fields is then as follows:

Theorem 1.1 (Classification of local fields): An exhaustive irredundant list of local fields is given by
the finite extensions of Qp, the finite extensions of Fp((T )), and R and C. Here p is allowed to vary over all
primes p.

One calls the local fields R and C the archimedean local fields, and the rest are called non-archimedean
local fields and they are characterized by the fact that their absolute values satisfy the ultrametric inequality:
|x + y| 6 max{|x|, |y|} which, as we will see, makes their study much more algebraic in nature. We shall
focus on the finite extension of Qp, the so-called p-adic local fields, and so when we say “local field” below
this should always be taken to mean “p-adic local field”. That said, most of what we will say will also apply
to the finite extensions of Fp((T )) the so-called completed function fields.

Remark 1.2: In the above classification one must be careful to interpret the result correctly. Namely, a
local field is both a field K together with a topology. The above list only gives the underlying fields of the
local fields. That said, there is a unique valuation extending that on Qp or Fp((T )) and can be defined as in
(6) as is discussed below. �

Let us consider some basic examples:

Example 1.3: The fields Qp( pn
√
p) are prime examples of local fields other than Qp itself. u

Example 1.4: The field Q7(ζ72−1) is a non-trivial extension of Q7 but, perhaps surprisingly, is only an

extension of degree 2. u

Example 1.5: Consider K := Q(i) and the prime p := (i+ 2) of OK = Z[i]. One then obtains a valuation
| · |p : Q(i)→ R>0 by sending a non-zero x ∈ K to 5−n if (x) = pn · I with I a fractional ideal of OK coprime
containing no power of p. Then, Kp, the completion of K at this absolute value, is a local field (since it’s
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non-discrete, complete, and locally compact). That said, it’s not clear what it’s structure as an extension of

some Qp is—in fact, it’s isomorphic (naturally) to Q5. u

Now, what makes the study of a local field K/Qp considerably easier than their global counterparts is
that they are complete with respect to a valuation | · | : K → R>0 which simplifies their algebraic structure
considerably—specifically, completeness implies that there is at most one absolute value on L extending that
on K for any extension L/K. This is patently false for the case of number fields as we will later see.

Remark 1.6: This statement about unicities of valuation extensions is an amusingly elementary fact.
Namely, one might recall that all norms on finite-dimensional R-vector spaces are equivalent. If one an-
alyzes the proof they can see that all that is really needed is that R is a complete valued field. Thus, the
same argument works on finite extensions L/K of local fields, since any valuation on L extending that on
K is a norm on the finite-dimensional K-vector space L—all such are equivalent. �

Note that local fields have a naturally defined subrings

OK := {x ∈ K : |x| 6 1} (4)

which is a DVR. We shall denote the maximal ideal of OK by mK and note that it is precisely

mK := {x ∈ K : |x| < 1} (5)

Note that mK must be principal and we call any such generator a uniformizer of K. We shall denote the
residue field OK/mK by κK .

As a matter of notational convention, let us mention the following. Fix an algebraic closure Qp of Qp
and let us consider only local fields as subextensions of this algebraic closure. Note that we can re-normalize
the norm on any such local field K so that its restriction to Qp is | · |p (the standard such absolute value).
In fact, in this case we can explicitly, and concretely write down the norm (owing, again, to the fact that
there is only one such norm up to equivalence). Namely,

|x|K =
∣∣NK/Qp

(x)
∣∣ 1n
p

(6)

if n = [K : Qp]. Note then that since we have a family of compatible norms on the finite extensions of Qp
in Qp that we can, in fact, extend the norm on Qp to any algebraic subextension Qp ⊆ L ⊆ Qp. We then
still have a natural valuation ring as in (4) with maximal ideal in (5) and a residue field κK . That said, one
should be wary that L will not in general be complete (in fact, it will be so if and only if L/Qp is finite) and
OL will not be a PID, and thus have no uniformizer (this is because | · |L needn’t be discrete).

Example 1.7: Let L := Qp( p∞
√
p) be the extension of Qp obtained by adjoining all pth-power roots of p to

Qp. This is non-complete (it’s an infinite degree extension) and it’s also true that OL is not a PID. Indeed,

| · |L is not discrete since, using equation (6), one sees that | pn√p|L = (p−1)p
n

. u

Example 1.8: Define Qur
p to be Qp({ζpn−1 : n > 1})—this is called the maximal unramified extension of

Qp, the reason for the naming of which will be made clear later. Then Qur
p is a non-complete extension of

Qp but, in fact, OQur
p

is a PID with uniformizer p. u

We will need very few general facts about local fields for this talk, but is useful to know when discussing
some aspects of higher ramification groups:

Theorem 1.9: Let L/K be an extension of local fields. Then, OL is monogenic—in other words, there is
some α ∈ OL such that OL = OK [α].

This is in stark contrast the case of number fields where, in general, number rings are not monogenic
extensions of one another—in fact, there are extensions of number fields L/K with OL not even a free
OK-module!
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1.2 The beginning of a filtration: inertia

1.2.1 The definition

Now, the study of the Galois group GK of a local field K (or any subextension of Qp) is largely going to
be informed by how well the various automorphisms in GK respect the structure of the ring OK . Indeed,
note that by the explicit nature of | · |K given in (6) one can see that for any automorphism of K acts by
isometries—we have that |σ(x)|K = |x|K for all x ∈ K. In particular, σ preserves both OK and mK .

Remark 1.10: There is, ostensibly, a tiny gap in the logic used above. Namely, it’s clear that σ ∈ Aut(K)
will act by isometries on K if σ fixes Qp. But, this is guaranteed since Qp is rigid—it has no non-trivial
automorphisms. This is an exercise in cleverly checking that any automorphism of Qp is continuous—this
implies the result since any automorphism fixes Q (necessarily) and thus, by continuity, is trivial since Q is
dense in Qp. The proof that such automorphisms are continuous is done in a similar way to the classic proof
that R has no automorphisms. �

So, for a Galois extension L/K, where K is a local field, we have a natural map

Gal(L/K)→ Gal(κL/κK) (7)

coming from the fact that elements of Gal(L/K) stabilize mK . We call the the kernel of this map the inertia
group of L/K (or just inertia group when L/K is clear from context) and denote it I(L/K). We then have
the following defining exact sequence

1→ I(L/K)→ Gal(L/K)→ Gal(κL/κK)→ 1 (8)

called the inertia exacts sequence (the verification that the map in (7) is surjective is not very difficult). We
shall abbreviate I(K/K) to IK .

Note that since κK is a finite field (being the residue field of a local field which, as one can check, are all
finite) and κL is an algebraic extension of κK , the group Gal(κL/κK) is exceedingly simple—it’s procyclic.
This realization amply motivates the following rough credo guiding our studies: the hard part of GK is IK .
In other words, any statement “Property/claim about GK is hard” is really a statement about IK .
We will later refine this credo.

As an example of this with an eye towards Galois representations note that if we have such a representation
ρ : GK → GLn(A) that we will be in a particularly simple situation if it satisfies ρ(I(K/K)) = {In}. Indeed,
if this is true then ρ will factor through GK/IK ∼= GκK

. In particular, if ρ is continuous (as will be the case
for all our representations) then the induced representation GκK

→ GLn(A) will be determined by its value
on the topological generator (i.e. on the Frobenius map).

In fact, in reasonable situations one can completely describe the set of Galois representations of GκK

valued in some field. For example:

Theorem 1.11: Let k be a finite field. Then, ρ 7→ ρ(Frob) is a bijection

Homcont.(Gk,GLn(Q`))
≈−→ {T ∈ GLn(Q`) : |λ| = 1 for all eigenvalues λ of T in Q`}

Regardless, we see that, whether focusing directly on the structure of GK or on the structure of its Galois
representations, almost the entire difficulty is bundled in the inertia group IK .

1.2.2 A recasting

It is extremely helpful to put the inertia subgroup I(L/K) in the context of actual field extensions of K.
Namely, we know that I(L/K) = Gal(L/F ) for some subextension L/F/K, and the understanding of what
this field F is will largely dictate our treatment of I(L/K).

So, let us first get down some basic terminology concerning extensions L/K of local fields or, more
generally, discretely valued fields. We then define the ramification index of L/K, denoted e(L/K), to be the

integer such that mKOL = m
e(L/K)
L or, equivalently, the index [|L×| : |K×|]. We define the residual index,

denoted f(L/K), to be equal to [κL : κK ]. It is easy to verify that the equality [L : K] = e(L/K)f(L/K)
holds as long as L/K is finite and K is a local field.
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Remark 1.12: The equality e(L/K)f(L/K) = [L : K] holds true more generally any time K is Henselian.
In particular, it does hold true for K any algebraic extension of K and L/K finite—but we won’t need this
here. �

Let us say that an extension L/K (again of discretely valued fields) is unramified if e(L/K) = 1 and
totally ramified if f(L/K) = 1. Note that saying that L/K is unramified is equivalent to saying that if πK
is a uniformizer of OK then πK is also a uniformizer of OL. A trivial observation is that for a tower L/F/K
of discretely valued fields one has that e(L/K) = e(L/F )e(F/K) and similarly for the residual index.

The key theorem concerning unramified extensions is their relationship to their extensions of the residue
field:

Theorem 1.13: Let K be a local field

1. L/K a finite extension. Then, L/K is unramified if and only if for any (equival. for one) α ∈ κL with
κL = κK(α) one has that L = K(α) for any lift α ∈ OL of α.

2. The functor L 7→ κL induces an equivalence of categories:{
Algebraic unramified

extensions of K

}
≈−→
{

Algebraic extensions
of κK

}
Remark 1.14: There are two comments concerning Theorem 1.13 that may be enlightening to some readers.
First, the inverse functor in 2. is given by sending k/κK to Frac(WK(k)) where WK(k) is the ring of K-
relative Witt vectors of k.

Also, being an unramified extension L/K means precisely that the map Spec(OL)→ Spec(OK) is étale.
In this light 2. in Theorem 1.13 is a consequence of the more general equivalence of sites ÉtX ∼= ÉtX0

where
X = Spec(A) with A a Henselian local ring, and X0 the closed point of X. �

From Theorem 1.13 we can easily deduce that if L/K is an unramified extension of local fields, and
E/K is any extension of local fields, then LE/E is unramified. Indeed, by the necessary condition of 1.
in Theorem 1.13 we see that L = K(α) with κL = κK(α). Then, we see that LE = E(α). Thus, by the
sufficency condition of 1. we see that LE/E is unramified.

In particular, if L,L′/K are two unramified extensions of local fields then LL′/L is unramified so that
e(LL′/L) = 1. Since e(L/K) = 1 we deduce from the multiplicativeness of ramification index in towers that
e(LL′/K) = e(LL′/L)e(L/K) = 1 and thus LL′/K is unramified.

Note that we have the following important consequence of the fact that unramified extensions are closed
under compositum. Namely there is a maximal unramified extension of K obtained as the compositum of
all finite unramified extensions of K—we denote this extension by Kur. In fact, a corollary of Theorem 1.13
is that we can fairly simplly describe Kur. Namely, if κK has size q then Kur = K({ζqn−1 : n > 1}). Indeed,
this follows from the fact that the maximal algebraic extension of κK , namely κK , is just κK({ζqn−1 : n > 1}).

We should now explain how this discussion of unramified extensions helps us to recast the definition of the
inertia group I(L/K) of a Galois extension L/K with K a local field. The key observation is that if L/K is
finite then f(L/K) = [κL : κK ] = |Gal(κL/κK)| and thus by the inertia exact sequence |I(L/K)| = e(L/K).
Thus, in particular, we see that I(L/K) is trivial if and only if L/K is unramified. More generally, since it’s
clear that an arbitrary Galois extension L/K, with K a local field, is unramified if and only if every finite
subextension is, we can deduce that L/K is unramified if and only if I(L/K) is trivial—no need to restrict
to finite extensions.

From this discussion we also derive a very useful alternative way to write I(L/K). Namely, if L/K is an
arbitrary Galois extension (withK a local field) then the above shows that I(L/K) is precisely Gal(L/L∩Kur)
or, equivalently, LI(L/K) = L ∩Kur.

1.3 The next step: wild ramification

In practice one cannot hope to deal solely with unramified extensions of local fields. By the same token one
cannot hope that every Galois representation ρ : GK → GLn(A) is unramified (i.e. that IK ⊆ ker ρ). That
said, we might hope for something slightly weaker to hold in a greater generality. Namely, perhaps there
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is a subgroup P (L/K) of I(L/K) which ‘small enough’ to often be killed in practice, but ‘large’ enough to
have I(L/K)/P (L/K), the subgroup a representation killing P (L/K) must factor through, be reasonable.
Thankfully, such a subgroup exists.

So, let us take the reverse role to defining P (L/K) that we took to defining I(L/K). Namely, for I(L/K)
we first defined a filtration

{id} ⊆ I(L/K) ⊆ Gal(L/K) (9)

which then gave rise to the tower

L

Kur ∩ L

K

I(L/K)

Gal(κL/κK)

Let us instead first define the analogue of Kur that will give rise to our subgroup P (L/K) ⊆ Gal(L/K).
To that end, let us say that an extension L/K, where K is a discretely valued field, is tamely ramified if

p - e(L/K). We call an extension L/K which is not tamely ramified wildly ramified. An abitrary algebraic
extension L/K, with K local, is called tamely ramified if every finite subextension is.

Remark 1.15: These definitions may extremely innocuous, perhaps even finicky. But, somewhat surpris-
ingly, will be responsible for the main complicatedness of the group Gal(L/K) as Gal(L/K) is very simple
if L/K is tamely ramified.

Moreover, it’s actually the notion of tame ramification that will make the study of `-adic representations
of GK (where K is p-adic) for ` 6= p so different from when ` = p (i.e. the study of p-adic Hodge theory). �

So, let us begin by making the same observation that we made for unramified extensions. Namely, let
us suppose that L,L′/K are tamely ramified extensions of local fields. Then, we want to say that LL′/K is
tamely ramified. Note that an extension F/K is tamely ramified if and only if FKur/Kur is since, evidently,
e(FKur/Kur) = e(F/K). Thus, it suffices to assume that K = Kur.

The result then becomes immediate considering the following theorem:

Theorem 1.16: Let K be a local field and let E/Kur be a finite tamely ramified extension. Then, E =

Kur(π
1
n

K) where n = [F : Kur].

Proof: Note that E/Kur must necessarily be totally ramified since f(E/Kur) = 1 (since κKur = κK). Thus,
we know that if πE is a uniformizer of E then πK = πnEu for u ∈ O×E . The claim will then be proven if we
can show that u has an nth root in E.

But, note that OE is Henselian. Indeed, this is obvious for OM for every finite subextension E/M/K
(since such a subextension has OM complete local) and since the question of lifting roots can be put into
the setting of finite extensions Hesenlianess follows.

So, to show that u has an nth root we must merely show that Tn − u ∈ κE [T ] has a simple root. But,
this is obvious since κE is algebraically closed of characteristic p and p - E. �

So, let us define Ktr to be the maximal (algebraic) tamely ramified extension of K. And let us define,
for any Galois extension L/K, the wild ramification group P (L/K) ⊆ Gal(L/K) to be Gal(L/L ∩Ktr). In
other words, we have the tower
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L

Ktr ∩ L

Kur ∩ L

K

P (L/K)

I(L/K)

giving rise to the filtration
{id} ⊆ P (L/K) ⊆ I(L/K) ⊆ Gal(L/K) (10)

which, by design, has the property that L/K is tamely ramified if and only if P (L/K) is trivial. As per
usual, we shorten P (K/K) to PK .

Note that by Theorem 1.16 we can explicitly describe Ktr. Namely, it’s Kur({π
1
n

K : (n, p) = 1}) or,

combining this with our description of Kur, it is K({π
1
n

k , ζn : (n, p) = 1}).
Theorem 1.16 also allows us to give our more refined credo concerning the study of local Galois groups.

Since it is one of the main points of this talk I’ll put it on a typographical pedestal:

Credo: Most of the complicated nature of GK , where K is a p-adic local field, is concentrated in PK . Thus,
statements of the form “Property/claim for GK is difficult” is really a statement about PK .

We attempt to partially justify this claim by showing that, at least in the case of tame ramification, Galois
groups are simple. In other words, we want to show that GK/PK is a relatively simple group. Namely, we

already know that GK/IK ∼= GκK
∼= Ẑ and it follows quite readily from Theorem 1.16 that IK/PK ∼= Ẑ(p)

which, by definition, are those elements of Ẑ with trivial component in Zp. In fact, Theorem 1.16 actually
shows more. Namely, it shows that PK is normal in Gal(L/K) and that

GK/PK = Gal(Ktr/K) ∼= Ẑ(p) o Ẑ (11)

where the morphism defining the semi-direct product

Ẑ→ Aut(Ẑ(p)) = (Ẑ×)(p)

is the product of the cyclotomic characters χ`,K as ` ranges over primes distinct from p. To be clear, let us
recall that if K is a local field then χ`,K : GK → Z×` (for any `, even ` = p) is defined as the composition

GK � Gal(K(ζ`∞)/K) ↪→ Gal(Q(ζ`∞)/Q) = Z×`
or, less cryptically, χK,` is defined by the rule that χK,`(g) mod `n (an element of (Z/`nZ)×) is such that

g(ζ`n) = ζ
χK,`(g) mod `n

`n .
A full justification for why the above credo is actually useful in practice will come later in our talks when

we discuss Grothendieck’s `-adic monodromy theorem and understand why there is no subject called “`-adic
Hodge theory”. The rough idea will be that, in practice (for a large class of A’s at least), one can expect
that for a Galois representation ρ : GK → GLn(A) one can expect that PK is “essentially in the kernel of
ρ” or, more correctly, ρ(PK) is finite.

1.4 Ramification filtration: lower indexing

So, having seen the success of the last two subsections, it seems only natural to try and push the sort of
filtrations as in (9) and (10) even further. Namely, why not try and create some sort of separated filtration

Gal(L/K) ⊇ I(L/K) ⊇ P (L/K) ⊇ G2 ⊇ G3 ⊇ · · · (12)
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(where separated means that
⋂
Gi = {id}) such that, in keeping with the hopes of the previous sections, we

have that each subsequent quotient Gi/Gi+1 is of a relatively simple form. The hope/idea being, as above,
that while we can’t hope that a general Galois representation is unramified, or even tamely ramified (i.e.
contains PK in its kernel), perhaps it will (in good situations) contain one of the Gi for i� 0 and thus might
be amenable to study by thinking of GK/Gi as the iterated extensions of the “simple” groups Gi/Gi+1.

So, to this end, let us try to make the following definition of Gi which is supposed to mimic the definition
of I(L/K). Namely, for each n > −1 define the nth higher ramification group (in lower numbering) of an
extension L/K of local fields, denoted In(L/K), as follows:

In(L/K) := ker(Gal(L/K)→ Aut(OL/mn+1
L )) (13)

So, for example, it’s evident that I−1(L/K) = Gal(L/K) and I0(L/K) = I(L/K). Slightly less evident, but
true (we’ll discuss this momentarily), is the fact that I1(L/K) = P (L/K).

The motivation for this definition is actually fairly simple. Namely, we think of OL/mn+1
L as being a sort

of “nth-order approximation to OL” in the same way that C[T ]/(Tn+1) is an nth-order approximation to
CJT K (i.e. it only keeps track of a power series up to the degree n term). Thus, in a very rough sense, one
might imagine sending σ ∈ Gal(L/K) to its image in Aut(OL/mL) as being something like a “derivative” and
sending it to Aut(OL/mn+1

L ) as being something like an “automorphism of the nth-order jet space” (a fancy
notion of higher derivative). It thus makes sense to try and filter Gal(L/K) by the subgroups of elements
which are more, and more difficult to distinguish from their “differential data”—the elements which have
jets agreeing with that of the identity map for higher and higher orders.

Now, as claimed above, the ramification filtration (in lower numbering)

Gal(L/K) ⊇ I(L/K) ⊇ P (L/K) ⊇ I2(L/K) ⊇ (14)

is separated. Indeed, if σ ∈ Gal(L/K) is in every In(L/K) then it acts trivially on OL/mnL for every n > 1.
Letting n tend to infinity shows that it acts trivially on lim←−OL/m

n
L = OL and thus acts trivially on L as

desired. This makes intuitive sense since what (a ring) A being complete (with respect to a maximal ideal
m) means is precisely that knowledge of A is equivalent to knowledge of all of its nth-order approximations
A/mn+1.

The second property we desired a good filtration to have is that the subsequent quotients Gi/Gi+1 are
of a particularly simple form. The fact that this holds true for the ramification filtration is codified by the
following result:

Theorem 1.18: Let L/K be an extension of local fields. Then:

I(L/K)/I1(L/K) ↪→ κ×L ,

In(L/K)/In+1(L/K) ↪→ κL, n > 1

Proof: This is a somewhat annoying, but routine, check. Namely, the maps are

I(L/K)/I1(L/K)→ κ×L : σ 7→ σ(π)

π
mod mL

and

In(L/K)/In+1(L/K)→ mnL/m
n+1
L : σ 7→ σ(π)

π
− 1 mod mn+1

L

respectively where, here, π is any uniformizer of L. One can check that these are, in fact, isomorphisms and
that mnL/m

n+1
L
∼= κL as κL-vector spaces. �

In particular, we see that the subsequent quotients in the ramification filtration are, in fact, abelian. This
proves the following highly non-trivial fact about Gal(L/K):

Corollary 1.19: Let L/K be an extension of local fields. Then, Gal(L/K) is solvable

And, consequently, since every Galois group of an algebraic extension L/K (with K a local field) is a limit
of its finite quotients, every Galois group Gal(L/K) with L/K arbitrary Galois (and K local) is pro-solvable.
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Remark 1.20: I don’t know if GQp is actually solvable. Namely, being pro-solvable does not, in general,
imply solvable. I tried to find information on whether GQp was actually solvable, but came up with nothing.
If anyone reading knows the answer, please do let me know.

Note, as well, that my usage of ‘solvable’ in the above is slightly non-standard. Namely, solvable usually
means a finite filtration with abelian quotients whereas, here, I really mean a countable separated filtration
with abelian quotients. �

Another thing that follows from this is that I1(L/K) is the Sylow p-subgroup of I(L/K) since it’s a
p-group (since In(L/K)/In+1(L/K) is a p-group for n > 1) and I(L/K)/I1(L/K) has prime to p-order. Of
course, it is the Sylow p-subgroup since it’s normal. In particular, even better than Corollary 1.19 we see
that if L/K is an extension of local fields then Gal(L/K) is isomorphic to

I1(L/K) o (Gal(L/K)/I1(L/K))

and by previous discussion Gal(L/K)/I1(L/K) is itself the semidirect product of two cyclic groups.
The last theoretic thing we’d like to prove in this section is the claim that if L/K is finite, then I1(L/K) =

P (L/K):

Theorem 1.21: Let L/K be a Galois extension of local fields. Then, I1(L/K) = P (L/K).

Proof: Since P (L/K) = Gal(L/L ∩ Ktr) it suffices to check that the restriction of I1(L/K) to L ∩ Ktr is
trivial to show that I1(L/K) ⊆ P (L/K). So, let’s show this first. Of course, it’s equivalent to show that
if L/K is tamely ramified then I1(L/K) is trivial. But, since I1(L/K) = I1(LKur/Kur) we may as well
assume that K = Kur. One can then visibly see from Theorem 1.16 that any element of the Galois group

acts non-trivially mod m2
L. Namely, if L = K(π

1
n

K) then all Galois group elements send π
1
n

K to ζπ
1
n

K for some

root of unity ζ, but modulo m2
L = (π

1
n )2 this is not equivalent to the identity map.

The converse is not difficult, and left to the reader. �

As a corollary of this we deduce the following:

Corollary 1.22: Let K be a local field and L/K a Galois extension. Then, P (L/K) is a pro-p-group. In
fact, P (L/K) is the pro-p-Sylow subgroup of Gal(L/K).

This will actually be the key property to the second part of our justification of our credo—the reason
why ρ(PK) is small for a large class of ρ.

Let us end this subsection with a classic example:

Example 1.23: It is a little tricky, but not overly deep, to compute the higher ramification groups for the
extension Qp(ζpk). Namely, we have that

In(Qp(ζpk)/Qp) = Gal(Qp(ζpk)/Qp(ζpe)), if pe−1 6 n < pe u

1.5 Ramification filtration: upper indexing

1.5.1 Motivation for necessity

Considering the immense success enjoyed by the ramification filtration considered in the previous subsection,
it seems strange to admit that we are not done—that this ramification filtration is not a good candidate
for the sort of filtration we need when talking about Galois representations. But, alas, it’s not. This is
a real shame since the ramification filtration (with lower numbering) in the last subsection is incredibly
more apparent/intuitive than the ramification filtration which will be used in practice (the one with upper
numbering).

There are many reasons that the upper numbering filtration, the one which will replace the lower num-
bering filtration, is preferred. Some are fairly fancy, but we will have a very concrete, immediate issue with
the lower numbering ramification groups that the upper numbering will fix.
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Remark 1.24: The somewhat fancy reason is that it is the upper numbering filtration is relevant in class
field theory where, there, the pullback along the Artin map K× → Gab

K of the upper numbering filtration
(on inertia) n is the ‘Lie filtration’ 1 + miK ⊆ K×. This is actually a general phenomenon—when a Galois
group is a p-adic analytic Lie group, then the upper numbering filtration corresponds to the very natural
Lie filtration (when we think about it as a p-adic analytic Lie group). One can see these notes for example.
This provides one reason to think that the upper numbering filtration groups are natural—they provide
literal intuition about “filtering by actions on jet spaces” in the case when the Galois group has an analytic
structure! �

To get to this issue, we begin by considering a thought experiment. Particularly, a simple desire we should
have is to have a filtration that works on I(L/K) for any Galois extension L/K (with K local). Indeed, it is
very rare that a Galois representation ρ : GK → GLn(A) will factor through Gal(L/K) for a finite extension
L/K. Thus, if we hope to be able to truly carry out our program of studying Galois representations by
having ρ be trivial on a sufficiently deep constituent of our filtration, we really do need to have the filtration
on an arbitrary Galois extension, in particular, on IK itself.

So, we then attempt to extend the definition of the previous section to work for L/K Galois. There is,
of course, a natural definition. Namely, OL is still a valuation ring with maximal ideal mL and the Galois
group of L/K still preserves mL. Thus the definition

In(L/K) := ker
(
Gal(L/K)→ Aut(OL/mn+1

L )
)

(15)

still makes sense and, hopefully, still works. Unfortunately, the world is not a fair or just place—it does not.
In fact, this might be semi-unsurprising since our intuition for why In(L/K), when L/K is finite, is useful is
that OL/mnL is like an “nth-order approximation” which allowed us to interpret elements of In(L/K) as being
like functions whose first n-derivatives (or, more formally, its first n jets) are trivial. But, this intuition was
predicated upon the idea that OL = lim←−OL/m

n
L (just like CJT K = lim←−C[T ]/(Tn)) and this fails for infinite

extensions extensions—they’re not complete.
In fact, the failure of In(L/K)’s effectiveness for L/K infinite can be spectacular. For example, if L = K

then the value group of L is V = {|πK |α : α ∈ Q} (where πK is a uniformizer of K). This then has the
property that every element V ∩ [0, 1] is a square, and thus, in fact m2

K
= mK so that, with the definition as

in (15), we’d have that In(K/K) = IK for all n > 1.
Thus, any definition as in (15) is bound to fail. But, we might have another brilliant idea which, in most

other situations, works. Namely, if we’ve defined In(L/K) correctly for L/K finite then for L/K Galois why
not just set

In(L/K) = lim←− In(L′/K) (16)

as L′ ranges over finite Galois subextensions L/L′/K? But, the reason why this does not work is, while not
overly complicated, is subtle and perhaps easily missed on a first read-through of this topic. Specifically, for
(16) to make sense, we’d need to know that if L1 and L2 are finite subextensions of L/K with L2 ⊇ L1 that
the natural quotient map Gal(L2/K)→ Gal(L1/K) takes In(L2/K) into In(L1/K)—but, it does not.

Namely, the lower numbering filtration is great when it comes to looking at subgroups of Gal(L/K). For
example in the situation above one can check that In(L2/K) ∩ Gal(L2/L1) = In(L2/L1) but it is bad at
respecting quotients which, if we hope to use an equation like (16) to define the filtration on arbitrary Galois
extensions, is unforgivable.

So, the way forward is clear: try and adapt the definition of In(L/K) so that it works well with quotients
instead of subgroups.

Remark 1.25: Note that there is, yet another, way of trying to define In(L/K) for L/K arbitrary Galois
which, when thought through, exposes the fundamental issue with In(L/K) which manifested itself above.
One can be inspired to attempt this alternative way by thinking about the inertia and wild inertia groups.
Namely, even though we restricted our attention to finite extensions L/K when defining the ramification
filtration, the first two non-negative terms, I0(L/K) = I(L/K) and I1(L/K) = P (L/K), were actually
definable and useful in the coveted situation of arbitrary Galois extensions as subsections 1.2 and 1.3 showed.
What gives? Why do those work for any Galois extension and not that of In(L/K) for n > 2?

To make this more clear, let us set
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Sn := {L/K : L/K is finite, and In(L/K) = 0}

for n > 2. So, for example, S0 is the set of unramified extensions of K and S1 the set of tamely ramified
extensions of K. Suppose for a second that Sn was closed under composition. We can then define a field
KSn

to be the compositum of the elements of Sn. So, again, KS0
= Kur and KS1

= Ktr. A little thinking
then shows that a perfectly fine definition of In(L/K), for any L/K Galois, would be Gal(L/L ∩KSn

)—for
example, this is what held true in the case of I(L/K) and P (L/K). So, what goes wrong with this for
n > 2? Well, it’s quite simple: Sn is not closed under compositum. This is, in some sense, the fundamental
obstruction which makes our definition of ramification groups (while intuitive) not helpful for dealing with
quotients/conducive to being defined for arbitrary Galois extensions

It’s a good exercise to find counterexamples showing this for n > 2. �

1.5.2 Definition and important properties

OK. Now that we have an understanding of what goes wrong with the lower-numbering filtration, we can,
as voiced earlier, attempt to fix it to create a filtration which plays well with quotients and, consequently,
will be able to be defined for arbitrary Galois extensions (as in (16)).

Unfortunately, I do not have a rich sense of intuition for why the definition we’re about to give works
beyond, well, it does. Even if one is made happy the edifying fact (mentioned in Remark 1.24) that the upper
numbering filtration agrees with the Lie filtration when the Galois group is a p-adic Lie group, it doesn’t
help intuit why the definition is obvious—for this I don’t have a great answer. Perhaps a deeper study of
the proof of the content of Remark 1.24 would yield the answer, but we don’t answer that here.

So, we will obtain the ‘correct’ filtration, the upper numbering filtration, by a fairly complicated rein-
dexing of the lower numbering filtration. Namely, we’ll define Iv(L/K) to be Iψ(v)(L/K) for some function
ψ which we’ll soon define.

So, let us fix an arbitrary Galois extension L/K of local fields. We will, unless stated otherwise, abbreviate
In(L/K) to In. We also extend the definition of In to Iu, for any u ∈ [−1,∞), by setting Iu := Idue. This
will be important since the function ψ will be much less annoying to define if we don’t have to worry about
only defining it on integers (or even whether that would suffice!).

So, let us define the function η : [−1,∞)→ [−1,∞) as follows:

η(u) :=

∫ u

0

dt

[I0 : It]

I wrote the definition this way since it is, after all, the ‘classical’ way of writing η. But, it’s deceivingly
complicated. Namely, η is just a piecewise linear function describable as follows:

η(u) :=

−u if u ∈ [−1, 0]
1

|I0|
(|I1|+ · · ·+ |Im|+ (u−m)|Im+1|) if u ∈ [m,m+ 1], m ∈ N

written this way it’s not hard to check that η is continuously, monotonically increasing, and surjective.
Thus, by basic analysis, η must be a homeomorphism. We denote its inverse by ψ.

So, finally we can give the long-awaited definition. For any v ∈ [−1,∞) we define the the vth-higher
ramification group (in upper numbering), denoted Iv (or Iv(L/K) when we want to emphasize the extension),
to be Iv := Iψ(v). One can check, for example, that ψ(v) is an integer if v is an integer. But, beware! It’s
not true that one can restrict themselves to Iv for v ∈ Z for, in general, it’s not true that

{Iv : v ∈ [−1,∞)} = {Iv : v ∈ (Z ∩ [−1,∞))}

So, just to point out the obvious, the groups Iv are all just some lower ramification group In (for some
integer n) but it’s not at all obvious what n it is (one would have to write down ψ which would require
knowledge of |Im| for all m).

Remark 1.26: It is a fairly deep result that if L/K is abelian (i.e. that Gal(L/K) is abelian) then, in fact,
the above warning is not necessary. Namely, the so-called Hasse-Arf theorem says that for abelian extensions
the jumps in the upper numbering filtration (the numbers where a new group appears) are integers. �
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The two key results that make the above seem worth it are as follows:

Theorem 1.27 (Herbrand): Let L2 ⊇ L1 be local fields which are Galois extensions of the local field K.
Let f : Gal(L2/K)→ Gal(L1/K) denote the usual quotient map. Then:

1. f(Iu(L2/K)) = Iη(u)(L1/K)

2. f(Iv(L2/K)) = Iv(L1/K)

Thus since η(u) 6 u, in general, and η(u) < u sometimes, one has that quotient maps don’t send
Iu(L2/K) to Iu(L1/K). But, the same is actually true for upper numbering and thus makes it amenable to
be used to define upper numbered ramification groups for an arbitrary Galois extension.

Remark 1.28: One can use Herbrand’s theorem to justify the definition of upper numbering filtration.
Namely, as soon as one finds a function ν : [−1,∞)→ [−1,∞) such that f(Iu(L2/K)) = Iν(u)(L1/K) then
(assuming that ν is invertible) one should, of course, set Iv(L2/K) = Iν−1(v)(L2/K). But, what is non-
obvious to me is why one would expect that the function ν one can take is the function η as we described.�

To this end, if L/K is an arbitrary Galois extension, with K a local field, we then define the higher
ramification groups, denoted Iv(L/K), for v ∈ [−1,∞), by the formula:

Iv(L/K) := lim←− I
v(L′/K) (17)

as L′ ranges over the finite Galois subextension of L/K. As per usual, we abbreviate Iv(K/K) to IvK .
Note that, by design, {Iv(L/K)}v∈[0,∞) gives a descending filtration on I(L/K) called the ramification

filtration (in upper numbering). The important properties, for us, of this filtration are as follows:

Theorem 1.29: Let K be a local field L/K a Galois extension. Then:

1.
⋂

v∈[0,∞)

Iv(L/K) = {id}

2. I0(L/K) = I(L/K).

3. P (L/K) =
⋃
v>0

Iv(L/K)

4.
⋂
v′<v

Iv
′
(L/K) = Iv(L/K)

Example 1.30: Consider the infinite Galois extension Qp(ζp∞). Then, note that Gal(Qp(ζp∞)/Qp) ∼= Z×p ,
and one can show that In(Qp(ζp∞)/Qp) = 1 + pnZp for all n > 1. Note that since Qp(ζp∞)/Qp is abelian

the Hasse-Arf theorem tells us that I really only do have to tell you the values of the filtration at integers. u

2 Global Galois groups in comparison with local Galois groups

Now that we have a thorough understanding of the basic structure of the Galois groups of local fields, we
can explain how these tie into the study of the Galois groups of global fields.

Again, we start as we must. A global field is either a finite extension of Q (a number field) or a finite
extension of Fp(T ) (a function field). Again, we’ll be mainly interested in the case of number fields, but
most of what we’ll say will apply to global fields at large.
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2.1 Connection to local fields

The first obvious question one might have is what is the precise connection between local and global fields?
The idea, roughly, is that global fields are “bundled together local fields” and, in a sense, the “local picture”
of a global field (where local needs to be interpretted correctly) is that of a local field. We will try and make
this geometric intuition more precise in the last section, but for now that little bit will suffice.

So, let us begin in earnest. It is somewhat enlightening, even though slightly counter to what is usually
taught in a first course in algebraic number theory, to think of global fields as being valued fields. The real
big difference is that, unlike local fields, global fields will have many non-equivalent valuations in general
since they are non-complete. In what follows we call an equivalence class of valuations on a global field K a
place of K.

So, to the end of studying number fields as valued fields, it’s helpful to first recall that Big Ostrowski
theorem which classifies the places of number fields:

Theorem 2.1 (Big Ostrowski): Let K be a number field with ring of integers OK . Then, a complete
irredundant list of absolute values on OK is given by | · |p, for each p ∈ Spec(OK), and | · |σ for σ a real
embedding K ↪→ R or a pair of complex embeddings σ, σ : K ↪→ C.

Remark 2.2: There is an analogous result to Theorem 2.1 for function fields. Namely, every function field
K/Fp(T ) is the function field an integral smooth projective curve C/Fp (perhaps not geometrically integral!).
Then, the absolute values on K correspond precisely the closed points of C. This is, in essence, precisely the
statement of the valuative criterion for properness after noting that any valuation is automatically trivial on
Fp. �

Here, |x|p = q−n (where q = |OK/p|) if the fractional ideal (x) is of the form pnI with I containing no
power of p. The absolute values |x|σ, for σ an embedding K ↪→ C are defined by |x|σ = |σ(x)|∞ where | · |∞
is the standard absolute value on C (the pairs of complex embeddings just means that | · |σ and | · |σ give
equivalent embeddings). We call the primes | · |p finite primes and the primes | · |σ infinite primes. They
are, equivalently, the non-archimedean absolute values and archimedean absolute values respectively. Note
that for each finite prime |x|p the valuation subring of K is (OK)p and its valuation ideal is p(OK)p.

The key result relating local and global fields is the follwoing:

Theorem 2.3: Let K be a number field and | · | some place of K. Then, the completion K|·| of K with
respect to | · | is a local field.

Proof: If | · | is an infinite place, then evidently the completion is either R or C which is local. Thus, we may
as well assume that | · | = | · |p for some prime p.

One can check that a complete non-discrete discretely valued field K is locally compact, and thus a
local field, precisely when its residue field κK is finite—if it’s local then OK is compact, mK is open and
thus OK/mK is both compact and discrete; if κK is finite then OK/mnK is finite for all n and since OK =
lim←−OK/m

n
K this implies that OK is compact.

Since the residue field of K|·| is the same as that of p(OK)p we see that K|·| has finite residue field and
thus is local by the previous paragraph. �

We shall always abbreviate K|·|p to Kp. It’s clear, by considering residue fields, that Kp is a p-adic local
field if (p) = p ∩ Z.

Now, the above says that the completion of global fields at their places are local fields, what is somewhat
surprising is that the converse is true:

Theorem 2.4: If F/Qp is a p-adic local field, then there exists a number field F/Q and a prime p ∈ Spec(OF )
lying over p such that Fp

∼= K.

This follows from Krasner’s lemma or, more precisely, from the following corollary thereof:

Lemma 2.5: Let K be a p-adic local field and f ∈ K[x]. Assume that f is an irreducible monic polynomial
of degree n. Then, there exists some δ > 0 such that if g(x) ∈ K[x] is degree n and such that |f − g| < δ
(where |h(x)| is the supremum of the norm of the coefficients) then g(x) is irreducible and for every root α
of f(x) there is a root β of g(x) such that K(α) = K(β).
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Remark 2.6: Using Lemma 2.5 we can show that there are only finitely many extensions of a p-adic local
field K of a fixed degree n. Indeed, one notes that every extension can be split into a unramified subextension
and totally ramified subextension. Since there is only one unramified extension of each degree (by Theorem
1.13) it suffices to deal with the totally ramified case.

one can then show that every totally ramified extension of a local field K is generated by an Eisenstein
polynomial: a polynomial f(x) = xn + · · · + a0 ∈ OK [x] with ai ∈ mK for i = 0, . . . , n − 1 and a0 /∈ m2

K .
Moreover, such an Eisenstein polynonmial is necessarily irreducible.

So,to show that there are only finitely many totally ramified extensions, we merely note that every
extension is a root of such an Eisenstein polynomial. But, the coefficients of this polynomial are in mK ×
· · · × mk × (mK − m2

K) which is compact. But, by Theorem Lemma 2.5 we know that if the polynomials
are sufficiently close (since they are automatically irreducible) they generate the same extension. Since the
space mK × · · · ×K ×(mK −m2

K) is compact we need only finitely many such neighborhoods to cover it, and
thus there are only finitely many such extensions.

This is in stark contrast to the global case there there are, for example, infinitely many extensions of Q
of every degree.

Note, by the way, that this is one place where the moniker ‘p-adic’ is important. Namely, Artin-Schrier
theory easily shows that Fp(T ) has infinitely many cyclic p-extensions. �

From Theorem 2.4 we also deduce the following super important corollary:

Corollary 2.7: For any choice of embedding Q ↪→ Qp the image is dense. Similarly, for any number field
F and prime p any embedding F ↪→ Fp has dense image.

Proof: It suffices to show that every p-adic local subextension K/Qp has K ∩ Q dense in K. That said,
this follows immediately from Theorem 2.2 by taking the F such that K = Fp. Then, F is dense in K and
F ⊆ K ∩Q. �

2.2 Comparison of extensions

Let us now think about extension of number fields E/F and how local fields factor into this study. Here, as
mentioned above, is where one of the key differences between local and global fields rears its head. Namely,
let us fix a finite prime |·|p on F . Unlike the local case where there was a unique extension (up to equivalence)
of the absolute value here there is, in general, many.

In particular, note that a finite place | · |q lies over | · |p (in the sense that its restriction to F is equivalent
to | · |p) if and only if q lies over p in the sense that q∩OF = p. In particular, since one can have many primes
lying over a given prime p (in fact, there are always primes p with [E : F ] distinct primes lying over them) we
are unable to canonically identify extensions of number fields with extensions of valued fields. Namely, when
thinking about an extension of a local field K we were largely able to conflate the notion of whether the
extension was an extension of valued fields (i.e. an extension of fields with the choice of an extension of the
absolute value) or just an extension of fields—this is because the unicity of extension made the distinction
moot. But, for number fields this is not the case.

But, choosing an extension of (non-archimedean) valued fields E/F , where E and F are number fields, is
equivalent to giving an extension of fields E/F and primes q ∈ Spec(OE) and p ∈ Spec(OF ) with q∩OE = p.

If we have such an extension (F, | · |p) → (E, | · |q) (where, one should note, | · |q restircted to F is only
equivalent to E in general, not literally equal) one gets an induced continuous map of local fields Fp → Eq

which can then be studied as we did above. Thus, we see that studying the extension of number fields E/F ,
with an eye towards their number theoretic properties, is a lot like studying the set of all inclusions Fp → Eq

and, as we will shortly see, essentially the important number theoretic data of E/F is contained in these
various Eq/Fp’s justifying this claim.

But, before we get to this, we can actually give a very clear understanding of how the various absolute
values lying over | · |p fit together and justify the phrase “the study of E/F , with an eye towards | · |p on F
is a cobbled together study of the various local extensions Fp → Eq” (a phrase on the lips of every student
of number theory during their Sunday morning walks).

Namely:
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Theorem 2.8: Let E/F be an extension of number fields, and p ∈ Spec(OF ). Then,

E ⊗Q Fp
∼=
∏
q|p

Eq

as normed Qp-algebras where, here, F ⊗Q Mp is given the unique (up to equivalence) norm obtained by
thinking of it as a [F : M ]-dimensional Mp-space.

2.3 Galois groups of number fields

Suppose now that E/F is an extension of number fields. We would like to understand what precisely is the
relationship between Gal(E/F ) and Gal(Eq/Fp) as in the previous subsection.

The first thing one must realize in this study is that, unlike the case of local fields, the Galois group
Gal(E/F ) doesn’t act continuously, in general, on E when E is given the | · |q-topology for some prime q.
Indeed, this should not be shocking since, at least in the case of local fields, the veracity of this statement
was essentially due to the unicity of absolute values whereas, here, we have many non-equivalent absolute
values on Eq even non-equivalent absolute values extending | · |p on F .

We can be even more explicit in the failure for Gal(E/F ) to act continuously on E with the | · |q-topology.
In particular, it’s not hard to see that the pullback of the norm | · |q along σ : E → E is precisely the norm
|·|σ−1(q). Thus, we can qualify the failure of Gal(E/F ) acting continuously on E when given the |·|q-topology
by the following result:

Theorem 2.9: Let E/F be a Galois extension. Then, Gal(E/F ) acts transitively on {q ∈ Spec(OE) : q | p}.

In particular, we see that Gal(E/F ) acts continuously on E with the | · |q-topology if and only if q is the
only prime of E lying over p := q ∩ OF .

Thus, to fruitfully analogize the inertial theory of local fields, we must restrict to those elements of
Gal(E/F ) which are continuous with respect to a given absolute value | · |q or, equivalently, which fix the
prime q. So, to this end, let us define for a prime q lying over a prime p the decomposition group, denoted
D(q | p), to be the set of those σ ∈ Gal(E/F ) such that σ(q) = q (as a set—not pointwise) or, equivalently,
those which are continuous with respect to the | · |q-topology.

It is then clear that, exactly as in the local case, once we restrict to decomposition groups we have a
natural surjective reduction map

D(q | p)→ Gal(κq/κp) (18)

where, here, κq := OE/q and similarly for κp. Thus, naturally, we define the inertia group of E/F at q,
denoted I(q | p), to be the kernel of this map which then gives rise to the same inertial exact sequence

1→ I(q | p)→ D(q | p)→ Gal(κq/κp)→ 1 (19)

exactly as in the local case.
Now, just as in the local case, the global case has ramification and residual indices but, just as with the

case of inertia groups the difference is that there are now more than one prime to keep track of. Namely,
for an extension of number fields E/F and primes q ∈ Spec(OE) and q ∩ OF = p ∈ Spec(OF ) one defines
e(q/p) to the power of q which shows up in the factorization of pOF and f(q/p) to be the degree [κq : κp].
Equivalently, this is just the normal definition of inertial and residual index when considering the extension
of discretely valued fields (E, | · |q)/(F, | · |p).

The analogy of [L : K] = e(L/K)f(L/K) in the local case is the following:

Theorem 2.10: Let E/F be an extension of number fields. Then, for any prime p ∈ Spec(OE) one has
that

[E : F ] =
∑
q|p

e(q | p)f(q | p)

If E/F is Galois then Theorem 2.9 guarantees that e(q | p) = e(q′ | p) for any q, q′ | p and thus, in that
case, we denote the common numbers by ep and fp. If gp denotes the number of primes lying over p then
Theorem 2.10 reduces to [F : M ] = epfpgp. Again noting that if E/F is Galois that
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fp = [κq : κp] = |Gal(κq/κp)|

(for any q | p) allows one to deduce that |D(q | p)| = epfp and |I(q | p)| = ep. Thus, as in the local case, we
see that q is ramified if and only if I(q | p) is trivial.

2.4 Connection between local and global Galois groups

We would now like to make precise the earlier statement that the interesting number theoretic information
contained in a Galois extension E/F of number fields is essentially a bundling of the number theoretic
information contained in the various extensions of local fields Fp → Eq.

The key observation to making this precise is the following. Suppose that E/F is a Galois extension
of number fields and let q ∈ Spec(OE) and q ∩ OF = p ∈ Spec(OF ). Then, as we’ve noted many times
above, the natural inclusion F →M induces a natural inclusion Fp → Eq. Note then that by restriction we
obtain a map Gal(Eq/Fp)→ Gal(E/F ) and a natural question is what this map is really describing. This is
completely answered by the following:

Theorem 2.11: Let E/F and q, p be as above. Then, the natural map Gal(Eq/Fp)→ Gal(E/F ) is injective
with image precisely D(q | p). The image of I(Eq/Fp) is precisely I(q | p).

Proof: To see that Gal(Eq/Fp) → Gal(E/F ) is injective we merely note that if σ is in the kernel, then
σ : Eq → Eq is continuous and fixes E. But, since E is dense in Eq continuity implies that σ = id as desired.

Now, note that since any element of Gal(Eq/Fp) is continuous for the valuation | · |q the same holds for
its image in Gal(E/F ). Thus, the image of Gal(Eq/Fp) lies in D(q | p). To see that it’s surjective we note
that since any element σ ∈ D(q | p) is an isometry for |·q it’s, of course, uniformly continuous. Thus, it lifts
uniquely to a map Eq → Eq (since uniformly continuous maps lift to completions) which is necessarily a
ring map since this can be checked (for a continuous map) on the dense subset E. This proves surjectivity,
and thus the first part of the theorem statement.

The statement concerning the inertia groups follows immediately from the observation that the natural
inclusions κq → κEq

and κp → κFp
are isomorphisms. �

Thus, we see that when we want to study E/F , or its Galois group, from the perspective of a given pair
of primes (p, q) as above, when we want to focus on that aspect of the extension, when we want to “localize
at these primes”, we may as well replace E/F with Eq/Fp—we may as well replace our global fields with
local ones.

We then see, immediately, that we may bring to bear the entire theory of local fields, and their Galois
groups, when studying global fields and their Galois groups. In particular, inside of every Galois extension
we have the natural subgroups Gal(Eq/Fp) and thus, by the theory of ramificaiton filtration, subgroups
In(q | p) and Iv(q | p) defined, not shockingly, to be In(Eq/Fp) and Iv(Eq | Fp).

2.5 Making statements over K

One must be somewhat careful when extending the results of the previous section to arbitrary Galois ex-
tensions of number fields. Namely, if E/F is an arbitrary Galois extension (possibly infinite) with F a
number field then, of course, we sill have that OE (defined, as usual, to be the integral closure of Z in E) is
integrally closed and dimension 1, but possibly non-Noetherian. We can then still make the claim that the
non-archimedean valuations on E correspond to the primes q of OE or, equivalently (and also what makes
this apparent) compatible systems of primes/absolute values on the finite subextensions E′/F .

So, if we have a prime q of E and the corresponding prime p := q ∩ OF we get an extension of valued
fields (F, | · |p)→ (E, | · |q) and, by completing, a map of complete valued fields Fp → Eq. But, here is where
one must be slightly careful. Namely, it is tempting to say that Eq should be an algebraic extension of Fp

but, unfortunately, this is not the case.

For example if, as per usual, one denotes Q̂p by Cp then, in fact, (Q)p = Cp for any prime of OQ lying
over p. Thus, it’s not immediate how to apply the general theory of local fields, and their arbitrary Galois
extensions, to the study of arbitrary Galois extensions of number fields.
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So, to be extra careful, we spell out what must be modified in Theorem 2.11 to work for arbitrary Galois
extensions. Namely, it still makes sense to define D(q | p) and I(q | p) even if E/F is an infinite Galois
extension. The correct analogue of Theorem 2.11 is then the following:

Theorem 2.12: Let F be a number field and E/F a Galois extension (possibly infinite). Let q be a prime
of E and p := q ∩ OF . Then, the map Galcont.(Eq/Fp) → Gal(E/F ) is injective with image D(q | p). The
image of Icont.(Eq/Fp) in Gal(E/F ) is I(q | p).

Here Galcont. denotes, as expected, continuous automorphisms of Eq/Fp—an automorphism is no longer
guaranteed to be continuous if Eq is not algebraic over Fp which, as mentioned above, happens if E/F
is infinite. The definition of Icont.(Eq/Fp) is defined precisely as one would imagine. Then, the proof of
Theorem 2.12 is precisely (literally verbatim) as that of Theorem 2.11.

This is somewhat messy to think about in general, so let us spell out what happens in the case of greatest
interest to us: the case of E = F . Here we can create an edulceration of Theorem 2.12 that will serve our
purposes quite nicely.

Namely, instead of directly trying to make Theorem 2.11 (or the correct analogue as in Theorem 2.12)
work for F/F let us just consider the following. Note that even though we have, for a prime p of F , natural
embeddings F ↪→ F and F ↪→ Fp given an algebraic closure Fp ↪→ Fp of Fp there is no canonical embedding
F ↪→ Fp. In fact, thinking for a moment, one can see that the choice of such an embedding is equivalent to
the choice of a prime q ∈ Spec(OF ) lying over p. So, let us choose such an embedding—any two equivalent
embeddings are conjugate by an element of GF .

Then, we get a natural map GFp
→ GF by restriction. It follows by Theorem 2.7 that this map is

injective since, every element of GFp
acts continuously on Fp. Thus, we needn’t fiddle with Theorem 2.12

and, instead, just think that we have GFp
sitting naturally (up to conjugation) inside of GF . A moment’s

thought shows, moreover, that the image of GFp
is precisely D(q | p) if q is the prime of F corresponding to

the embedding F ↪→ Fp, and similarly the image of IFp
is I(q | p).

Thus, at least in the case of the absolute Galois group, we do have a completely perfect analogy of
Theorem 2.11 and the pursuant implications (e.g. that GFp

contains IvFp
).

Remark 2.13: If one is willing to think a little harder, one can get this much better version of Theorem
2.12, where we actually have D(q | p) as the image of Gal(L/K) for some Galois extension with K a local
field.

Namely, let’s for each prime p an algebraic closure Qp. Then, if E/F is a Galois extension with F a
number field, then, of course, Eq embeds into (Q)λ = Cp (for some prime λ lying over q). Let L := Eq ∩Qp,
the intersection taken in Cp. Then, naturally, L is dense in Eq and thus one can see that Galcont.(Eq/Fp) =
Gal(L/Fp) which gives a more useful version of Theorem 2.12. The reason that we separated this from the
discussion of the case E = F is that, in that case, we explicitly know that the L is: it’s just Fp.

This line of thought quickly leads to some very interesting, somewhat difficult, and incredibly important
questions. For example, if we have that (with the notation above) Galcont.(Eq/Fp) = Gal(L/Fp) one might
wonder if there is some sort of “continuous Galois theory” for Galcont.(Eq/Fp) related to the standard
Galois theory of Gal(L/Fp). In fact, there is. Namely, it is a difficult theorem of Ax-Sen-Tate that if

H ⊆ Gal(Eq/Fp) is closed then EHq is precisely LH . So, the answer to how this continuous Galois theory
reacts to the normal Galois theory is that it is, in some sense, a completed Galois theory. �

3 Making geometric connections

3.1 A ‘just look at it’ connection

Now that we have discussed the necessary technical details in the study of local and global fields, and their
Galois groups, I’d like to return to the first section and make a more explicit connection between the system

{GQp ↪→ GQ} and the system {π̂1(Dp) ↪→ GC(T )}.

Remark 3.1: Here is where we can start to see the relevance to the selection of base points in the choice

of π̂1(Dp). Namely, not doing so has given us only a system of conjugacy class of inclusions into GC(T ) just
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like refusing to specify which prime p of OQ lying over p (i.e. choosing an embedding Q ↪→ Qp) results in
only a conjugacy class of embeddings GQp ↪→ GQ

The idea, not surprisingly, is that just like GC(T ) classifies topological data and that the restriction to

π̂1(Dp) is the study of how this topological data looks like “locally at p”, one should imagine that GQ is
classifying arithmetic data (or, perhaps more fittingly, arithmetico-geometric data) and that GQp

is the study
of how this data looks like “locally at p”.

If one is happy to just accept this fact as being reasonable then they can stop reading here. But, I’d
like to take a second to explain why this plausible and then, once we are semi-convinced that it is, what the
more fine structural data looks like under this analogy.

So, let us begin, as we did with GC(T ), with an equality:

GQ = lim←−
S⊆Spec(Z) finite

GQ,S (20)

here Spec(Z) = Spec(Z) ∪ {| · |∞} or, equivalently, the set of places of Q. The group GQ,S is equal to, by
definition, Gal(QS/Q) where QS is the maximal extension of Q unramified outside of S (NB: an infinite place
ramifies precisely when a real place becomes a complex place). The fact that the equality in (20) holds is
trivial: interpreted correctly it just says that every finite extension of Q ramifies at only finitely many places
which is obvious. This is not surprising if one believes the analogy (and is good evidence for the analogy),
namely one can boil down the intuitive argument for (1) to the statement “a finite algebraic cover P1

C can
only ramify at finitely many places”.

Remark 3.2: In fact, the arguments are essentially the same. Since the maps X → P1
k or Spec(OL) →

Spec(OK) are finite flat, it suffices to show that Ω1
X/P1

k
or Ω1

OL/OK
is supported at finitely points. That said,

since both X and Spec(OL) are one-dimensional (and Ω1 is coherent) this is equivalent to showing that Ω1

is not zero in both cases. But, this is obvious since the map on generic fibers is a separable extension of
fields with has non-vanishing cotangent sheaf. �

This equality suggests, perhaps, that in the analogy between GC(T ) and GQ the following identifications
could be made:

Geometric side Number theory side

C(T ) Q
P1
C Spec(Z) := Spec(Z) ∪ {| · |∞}

US Spec(Z)− S

π̂1(US) GQ,S
Dp Spec(Qur

p )

π̂1(Dp) IQp

although some of these should be justified. Namely, why is Dp equal to Spec(Qur
p ) and not Spec(Qp)? The

idea, roughly, is to think about what a small punctured disk around p should be—what algebraic space is
that represented by (at least intuitively)? Well, if we think about what the functions on an arbitrarily small
disk around p should be they are we get, not shockingly, the ring of convergent power series C{{z − p}}.
That said, since we’re interested in the world of algebraic geometry where the convergence itself doesn’t
make sense, we take the next natural replacement: the ring of power series CJT K.

Remark 3.3: There is a slightly more convincing way to intuit why the disk we’re after is CJT K and not
C{{z − p}} but it requires a serious diversion into a discussion of Henselizations and the points of the étale
topos, and so is perhaps not appropriate here. �

So, if a small disk around p should have functions like CJT K then the disk itself, or at least an algebraic
modeling of it, would be like Spec(CJT K). But, of course, we are not interested in the disk around p but the
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punctured disk which means that we need to remove the point p from the disk—we need to remove the closed
point from Spec(CJT K). Thus, in fact, the most natural algebraic model for Dp is actually Spec(C((T ))). Note
then that the algebraic reason why Dp should be analogized to Spec(Qur

p ), or equivalently the reason that
C((T )) should be analogized to Qur

p , is that C((T )) has no unramified extensions! Indeed, this is because the
residue field of C((T )) is already algebraically closed.

More geometrically, if Dp was analogized to Spec(Qp) (opposed to the maximal umramified extension)
then we’d have the the un-punctured disk Spec(CJT K) should be analogized to Spec(Zp). But, the issue is
that the center point of the disk, the point p, has no interesting topology: π1({p}) = 0. So, if this analogy
holds one would imagine that the central point of Spec(Zp), the closed subscheme V ((p)) = Spec(Fp), would
have no interesting arithmetico-geometric information contained in it. But, of course, it does—it has non-
trivial covers! Thus, we try and fix this analogy by eliminating the arithmetico-geometric data contained in
the center point, we think about trying to make this central point algebraically closed without altering the
surrounding “disk” too much. Thinking about it shows that this is precisely what passing from Spec(Zp) to
Spec(Zur

p ) does—it changes the central point to no longer be arithmetico-geometrically interesting (it turns

it from Spec(Fp) to Spec(Fp)) while keeping the surrounding disk essentially intact.
To further convince ourselves that our analogy is correct, wes should note that if Spec(C((T ))) is the right

analogy of Dp then GC((T )) should be the same as π̂1(Dp). Since the latter is obviously Ẑ this comes down

to the question as to why GC((T )) is Ẑ. But, this is essentially done as in Theorem 1.16. Namely, note that
any extension of C((T )) is tamely ramified (since its residue field is characteristic 0), and since it’s already
its own maximal unramified extension, the same proof works to show that all the extensions of C((T )) are of

the form C((T
1
n )) (for any n) and thus the Galois group is Ẑ.

Of course, this connection also shows that, perhaps, the correct analogy for π̂1(Dp) is actually IK/PK
since, as we noticed above, the space Dp has no wildly ramified covers (since it’s residue field is characteristic

0) but I think this is not that IK is not the right analogy to π̂1(Dp) but that the analogy is not perfect due
to the nice properties of C(T ) not enjoyed by Q.

Hopefully the above was semi-convincing that the analogy between GC(T ) and GQ, with a focus on how

GQp
is like π̂1(Dp) (and thus giving geometric backing to the claim that GQp

is the study of the objects GQ
classifies “locally at p”). That said, as the title of the subsection suggests, this justification was mostly just
“the same things are showing up on both sides and thus they are analogous”. In the next section we give
slightly higher-tech justification.

3.2 Connection using πét
1

We would now like to make a slightly more precise justification as to why these two situations are analogous
by using the formalism of Grothendieck’s étale fundamental group. We will not recall the definition of it
here but, suffice it to say, that nothing I can say will match the exposition in Szamuely’s text Galois groups
and fundamental groups.

Specifically, let’s start again by looking at (20). Namely, let’s rewrite it as

GQ ∼= lim←−GQ,S (21)

where now S ranges over finite subets of Spec(Z) which contain the infinite place |·|∞. This equality still holds
true since the statement justifying (20) “an extension ramifies at only finitely many places” now becomes
the even simpler statement “an extension ramifies at only finitely many primes” (which justfies (21)). The
reason to work with this version of the inverse limit is that it avoids having to work with archimedean places
(objects of analysis) focusing, instead, on the finite places (objects of algebra). This also valuable in the
analogy since P1

C is in bijection with the finite places (the non-archimedean ones) of C(T ).

The key observation then to make is that GQ,S = πét1 (VS) where, here VS = Spec(Z)− S. Indeed, since
VS is normal it’s well known that πét1 (VS) is Gal(K(VS)ur,S/K(VS)) where K(VS) is the function field of VS
and K(VS)ur,S is the maximal extension of K(VS) unramified outside the primes of S. This is precisely the
definition of GQ,S . Indeed, K(VS) = Q and then K(VS)ur,S = QS .

Thus, we can rewrite (21) as
GQ ∼= lim←−π

ét
1 (VS) (22)
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which then provides a semi-convincing argument for why one might analogize πét1 (VS) and πét1 (US). This, in
turns, then explains why one might then analogize VS and US . From where then one can make the jump to
analogizing P1

C to Spec(Z) fairly easily.
One might then imagine that for a fixed place v of Q that the analogy of Qp for C(T ) should be

the completion of C(T ) under that place. Specifically, the (finite) places of C(T ) are the valuations vp
corresponding to the points p ∈ P1

C and the completion of C(T ) at this place is C((T )) (or C((T − p)) if we’re
trying to emphasize p). But, we discussed in the last section why Dp was like Spec(C((T ))) and thus we
see that this gives a fairly convincing argument as to why Spec(Qp) is like Dp. Thus, they should have

the same étale fundamental groups, which shows that π̂1(Dp) = πét1 (Dp) is like πét1 (Spec(Qp)) = GQp
. Of

course, in the last section explained why it was, perhaps, more enlightening to think about the analogy that

Dp is like Spec(Qur
p ) and then, by taking fundamental groups, we obtain the analogy between π̂1(Dp) and

πét1 (Spec(Qur
p )) = IQp

as in our table.
Hopefully the reader will take this slightly enhanced version of the last section as even further justification

for why the analogy we’ve been making is an apt one.

3.3 A more ‘advanced’ justification

A lot of the above intuitive justification seems fair, but has one (as far as I can see) major hole in its

logic. Namely, when thinking about obtaining the ‘local difficulty of’ π̂1(US) ‘at p’ we really were computing
something like

lim−→
V

π̂1(V ) (23)

as V traveled the neighborhoods of p in the complex topology. Indeed, the point we made earlier is that
this is just, essentially, computing the fundamental group of a punctured disk since these punctured disks
form a cofinal system of these V ’s and that the maps between the fundamental groups of these disks are
isomorphisms—this is a rigorous phrasing of why ‘how small we made the disk’ didn’t matter.

Now, the usual/natural replacement for the complex topology on schemes is the étale topology. Thus
an extremely natural way of trying to analogize the study of the ‘local geometry of P1

C at p’ to the case of
studying GQ is to try and compute something like

lim−→
(U,u)

πét1 (U∗, v) (24)

where (U, u) travel over pointed étale neighborhoods of (VS ,Spec(Fp)) v is some geometric point of U∗ (where
VS is in the last section, and p /∈ S is a prime (we’re trying to be more careful with base points since we’re
going to make an actual formal statement) and U∗ is U minus the image of u (we’ll make an actual rigorous
statement later that will undo any of the annoying details of this—just take it as intuition)

Now, if X is a scheme and x a geometric point of X then there is a name for the colimit lim−→
(U,u)

OU (U) as

(U, u) travels of the pointed étale neighborhoods of (X,x). Namely, we call it the strictly local ring of X at
x and denote it OX,x. Now then Spec(OX,x) should be like an ‘arbitrarily étale zoomed in neighborhood
around x’ and Spec(OX,x)∗ should be the result of ‘removing x’ from this—this should be the analogy of
a small disk around p and a small punctured disk around p (since, again, at least on P1

C cofinal systems
of neighborhoods/punctured neighborhoods where disks/puncutred disks). Thus, perhaps, the real, honest,

correct analogue of studying π̂1(Dp) is studying πét1 (Spec(OX,x)∗, v) since, after all, this is the direct analogue
of (23)—and this is ‘more convincing’ since the étale topology is well-known to be the ‘correct topology’
when thinking ‘topologically’ about schemes.

Let us make this somewhat more rigorous. Namely, if (R,m, κ) is a local ring let us define a Henselization
to be a Henselian local ring (Rh,mh, κh) together with a map of local rings (R,m, κ)→ (Rh,mh, κh) which is
universal (i.e. its initial amongst maps of local rings from (R,m, κ) to (S, n, η) with S Henselian). Choose a
separable closure κ ↪→ κsep we call a local ring (Rsh,msh, κsh) a strict Henselization of (R,m, κ) and κ ↪→ κsep

if given any other Henselian local ring (S, n, η), a local map (R,m, κ)→ (S, n, η), and an embedding ksep ↪→ η
there is a unique factorization (Rsh,msh, κsh)→ (S, n, η).
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Now, one can show that OX,x is a local ring, and, moreover, that the natural map OX,x → OX,x is
local. If then one has chosen x to just be an embedding κ(x) ↪→ κ(x)sep then one can show that the map
OX,x → OX,x realizes OX,x as a strict Henselization of OX,x.

Now, here’s a non-trivial fact that one can show. Namely, if X = Spec(R) with X a DVR then Rh is
a DVR as well and Rsh = O(FracRh)ur . In particular, choosing X = VS (as a above—a punctured Spec(Z))

and p ∈ S an ‘arbitrarily small étale small disk around’ should be Spec(Zsh(p)) and an ‘arbitrarily small

étale punctured disk at p’ should be Spec(Frac(Zsh(p))) since Spec(Zh(p)) minus its closed point (correspond-

ing to the center of the disk: p) is this spectrum. Thus, honestly, truly (given that the étale topology

is the topology mimicking our usual notions of ‘closeness’) really the replacement for ̂πét1 (Dp) should be
πét1 (Spec(Frac(Zh(p))) = GFrac(Zsh

(p)
).

But, this might make us sad—this entire time we’ve been working under the assumption that the correct

analogue of studying π̂1(Dp) for GQ was studying GQp
but this (fairly solid) intuition strongly suggests

that we should really be considering GFrac(Zsh
(p)

). So, have we erred? Have we made some grave misstep of

intuition? Well, thankfully, no, not really (otherwise I wouldn’t be writing this. . . ).
To make these two notions commensurate we use the following beautiful fact:

Theorem 3.4: Let R be a DVR with perfect residue field. Then, there is a natural isomorphism GFrac(Rh)
∼=

GFrac(R̂).

This is not so difficult, but uses (and is largely immersed in) the study of Artin-Popescu approximation

which, roughly, relates zeros of polynomials over Rh and over R̂.
In particular, Theorem 3.4 says, taking R = Z(p), that GFrac(Zh

(p)
)
∼= GQp . Thus, using all of the above

intuition we see that the correct analogue of π̂1(Dp), the group GFrac(Zsh
(p)

) is actually GQur
p

= IQp . It is not

totally shocking that we’re getting IQp and not GQp directly—in the case of P1
C the point we’re zooming in

on had no topology of its own whereas in the case of VS the point Spec(Fp) does have topology, and precisely
the difference between Zh(p) (whose fundamental group is just GQp

) and Zsh(p) is that the latter ignores any

interesting ‘geometry’ coming from the point Spec(Fp). Moreover, in practice, the difference between GQp

and IQp is minimal since, as our credos mentioned, it’s really IQp that is the interesting/hard part of GQp .

3.4 An example of the intuition going another way

In all of the above we’ve tried to make analogies on the number theory side from facts we already knew on
the topological side. To show a semi-robustness of the total analogy, let us, instead, try and go the other
way—show a result on the topological side which is (perhaps) less known and is motivated by what is natural
on the number theory side.

Namely, we made claims above that one should think about π1(Dp) as being the study of GC(T ) ‘at p’
and that it should be simpler since we’ve focused on just this one point. Let us try to make this somewhat
precise. How we do so is influenced largely by what happens in the number theoretic case. This result will
also make clear precisely what the geometric analogy of looking at Eq/Fp is.

So, let us give the setup. Suppose that X is a compact (connected) Riemann surface—it is not strictly
necessary to think only in the case of Riemann surfaces, but it certainly allows one to ignore some technical
difficulties. Suppose further that that π : Y → X is a finite (connected) ramified cover of X. Recall that
this means that there is some finite subset S ⊆ X of ramified points such that if we consider YS → XS where
here (as usual) XS = X−S and YS = π−1(XS) (where π−1(S) are the branch points of π) then we obtain an
actual covering space. It is well-known Y has a unique structure of a compact (connected) Riemann surface
such that π is holomorphic but, again, this is not strictly necessary knowledge for what we’re doing. We’ll
assume further that Y ′ → X ′ is a Galois covering or, what amounts to the same thing, the field extension
K(Y )/K(X) is Galois.

Of course, the idea that we have in our head is that Y → X is like the map π : Spec(OE)→ Spec(OF ), for
an extension of number fields E/F . The set S ⊆ Spec(OF ) is the set of ramified primes of L/K. Moreover,
we know that π : (Spec(OE) − π−1(S)) → (Spec(OF ) − S) is a finite étale cover. Now, one of the natural
things we considered in this setup was the decomposition group D(q | p) or, equivalently, (assuming the cover
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was Galois), the image Gal(Eq/Fp) under the image of the map Gal(Eq/Fp) → Gal(E/F ). So, a natural
question is what this corresponds to on the ‘topological side’.

Now, since π : Y ′ → X ′ is a connected cover, we know that for any point p ∈ X ′ the group Aut(Y ′/X ′)
acts simply transitively on π−1(p). In particular, if σ ∈ Aut(Y ′/X ′) is such that σ(q) = q for some q ∈ π−1(p)
then σ = id. That said, since Y → X is not a covering map, it is conceivable (and actually necessary as
we’ll soon see!) that σ(q) = q for some branch point q ∈ π−1(S) and some σ ∈ Aut(Y/X). Thus, we might
imagine that for a branch point q ∈ π−1(S) we could define a ‘decomposition group’ D(q | p) to be those
elements of Aut(Y/X) fixing q. So, what can we say about the structure of this group?

Well, let’s recall that most natural way to study the group D(q | p) in the number theory side is to realize
it was Gal(Eq/Fp). What is the analogy here? Well, we already said that intuitively considering Fp is like
‘zooming in on’ p and thus, perhaps, we should start by zooming in on p ∈ X. In particular, let us choose
a small enough disk D around p where, here, small enough is so that it contains no other ramified points of
π : Y → X and, moreover, that π−1(Dp)→ Dp is a trivial cover where, here, Dp := D − {p}.

Now, if we imagine that Dp is like Fp then what do we expect π−1(Dp) to look like? Well, note that
since tensor product is pullback in algebraic geometry, the analogy of π−1(Dp) in the number theoretic world

would be Fp ⊗F E which, as Theorem 2.8 tells us is precisely
∏
q|p

Eq. Thus, we might imagine that π−1(Dp)

should break up into pieces. Namely, we can think of each Eq as being being the connected components of
Fp ⊗F E (it’s the connected components of the spectrum of this Fp-algebra), and so we might imagine that
π−1(Dp) breaks up into natural pieces.

To make this slightly more clear, let us adapt our construction of the D and Dp slightly. Namely, let
us take disjoint neighborhoods Vi of each branch point qi lying over p so that π |Vi

is (up to biholomorphic
change of coordinates) z 7→ ze. Let us then let D ⊆ X be a disk around p containing all the π(Vi) and,
finally, let Dp := D − {p}. Thus, while we have not made a substantive change to the above, the added
precision of the construction now makes it clear that π−1(Dp) has connected components Ui corresponding
to each point qi ∈ π−1(p).

Now, since π−1(D)’s connected components are like the connected components of Kp⊗F E we see that
while Dp is like Fp the extension Eq/Fp is like the map π : Ui → Dp which, of course, is a connected cover.
Thus, to create the analogy between D(q | p) = Gal(Eq/Fp) we would like to make a claim such as D(qi | p)
‘equals’ Aut(Ui/Dp). But, this certainly needs justified.

For example, it’s not immediately obvious why there should even be a map Aut(Ui/Dp)→ Aut(Y/X) =
Aut(Y ′/X ′). The key is that since Y ′/X ′ is a Galois cover, given two points y, y′ ∈ π−1(x) in the fiber of
x ∈ X ′ there is a unique element σ ∈ Aut(Y ′/X ′) such that σ(y) = σ(y; ). So, if τ ∈ Aut(Ui/Dp) we can
then map it to σ ∈ Aut(Y ′/X ′) = Aut(Y/X) according to the rule that σ(y) = τ(y) for any point y ∈ Ui
(which, of course, is a point of π−1(x) with x = π(y)). By the above rule there is a unique such σ and, as
one can check, this map is evidently an injective group map Aut(Ui/Dp) ↪→ Aut(Y ′/X ′) = Aut(Y/X).

We claim that the image of this map is precisely D(q | p) which, of course, is what we’d expect from the
case of number fields. To see this we note that since Ui/Dp is a connected cover we can almost reverse the
process above. Namely, given σ ∈ Aut(Y ′/X ′) it’s tempting to say that it can be mapped to τ ∈ Aut(Ui/Dp)
by the rule τ(y) = σ(y) for any y ∈ Ui. Unfortunately, this process presupposes that σ(y) ∈ Ui or,
equivalently, that σ stabilizes Ui. That said, it’s clear σ stabilizes Ui precisely when σ ∈ D(q | p).

Thus, we can summarize the above as follows:

Theorem 3.5: Let π : Y → X be a ramified cover of connected compact Riemann surfaces. For any ramified
point p ∈ X choose a D containing p subject to the condition that π−1(D) decomposes into neighborhoods
Ui of each qi ∈ π−1 which, up to biholomorphisms, look like z 7→ ze (as an endomorphism of the unit
disk). Then, the connected components of π−1(Dp), where Dp := D− {p} are precisely the Ui and the map
Aut(Ui/Dp)→ Aut(Y/X) = Aut(Y ′/X ′) as described above is injective with image precisely D(q | p).

Now, this theorem certainly hearkens to Theorem 2.11, strengthening our geometric intuition for what
Eq/Fp is like (it’s like Ui → Dp) and thus what studying the local ‘geometry’ at q over p in terms of
Gal(Eq/Fp) really means. But, it also allows us to give a nice conceptual proof of the following fact:

Corollary 3.6: Let π : Y → X be as above. Then, for any points q ∈ Y and p = π(q) ∈ X the group
D(q | p) is cyclic of order e(q | p).

23



Proof: As Theorem 3.5 shows us, we’re trying to show that Aut(Ui/Dp) is cyclic. That said, since Ui → Dp

is a Galois cover of Dp, we know that Aut(Ui/Dp) is a quotient of π1(Dp, x) (for any point x ∈ Dp), but, of
course, π1(Dp, x) is Z, thus proving that D(q | p) is cyclic. Since it acts simply transitively on a size of set
e(q | p) we see that it must be of order e(q | p). �

I find this to be a very nice, very conceptual proof of this result emphasizing the key idea: the simplicity of
the local geometry of X ′ is reflected in the simplicity of the ‘local groups D(q | p) = Aut(Ui/Dp)’. Moreover,
and perhaps this is my failing as an amateur topologist, I actually didn’t know an obvious/conceptual way
of thinking about Corollary 3.6 without attacking through Theorem 3.5 which I only happened upon by the
number field/topology analogy.

3.5 The geometric reason PK is hard

In this last section I’d just like to give an example of how wild ramification makes geometry hard. Namely,
after the last few sections it seems plausible to have geometric intuition for some of the difficulty in studying
GQp and, as our credo says, this would really be geometric intuition about why PK is difficult—about why
wild ramification is difficult.

So, how can we see explicitly how wild ramification can mess with our geometry—how wild ramification
can make the geometry more difficult? Well, unfortunately, we can’t see this directly through the analogy
between GC(T ) and GQ since, unfortunately, the former has no wild ramification. We need to go a closer
comparision to GQ, somehow an interpolation between GC(T ) and GQ—we need to talk about GFp(T ). This
simulatenously has a natural connection to geometry since Fp(T ) is the function field of P1

Fp
(although

not nearly as nice as C(T ) where we could interpret things in a literal, topological notion when we said
“geometric”), but also has many of the arithmetic subtleties present in Q.

So, let’s go forward as we have been doing. Namely, let’s try and write down the analogy of (1) and (21)
for GFp(T ). Specifically we get the following:

GFp(T ) = lim←−
S⊆P1

Fp

πét1 (WS) (25)

where, here, for S ⊆ P1
Fp

finite we set WS = P1
Fp
− S. One might then imagine that since WS is very

geometric, that computing πét1 (WS) might be easy. I mean ,US ⊆ P1
C was very geometric and it was precisely

this geometric interpretation that led to the incredibly simple description πét1 (US) = F̂n if n = #S − 2.
Unfortunately, this is not the case.

But, and this is the important thing I want to emphasize in this section, is that what stops the com-
putation of πét1 (WS) from being simple, what impedes the geometry of curves of WS , is precisely wild
ramification. In fact, as we’ll momentarily see the exact same sort of geometric thinking that computes
πét1 (US) goes through (essentially untouched) to computing the covers of WS for which wild ramification
doesn’t meddle (in a way we’ll soon make precisely).

In particular, I’d like to focus on what might be, perhaps, the simplest case of this. Namely, let’s consider
S = {∞} so that WS = A1

Fp
. Then, we’ll see that simple geometric considerations will imply that a finite

étale cover X → A1
Fp

is geomtrically trivial if, at one point in our discussion, we can assume that a map is
tamely ramified. In particular, we will see that it’s precisely wild ramification that is going to gum up our
geometric machinations.

So, what we really interesting in studying is connected finite étale covers X → A1
Fp

So,to this end, let X

denote the natural smooth projective integral compactification of X (note that X is a smooth integral affine
curve so we can do this) and consider the induced map X → P1

Fp
. If we can show that this is finite étale

then we’re done since π1
ét(P1

Fp
) = 0 (which follows trivially from Riemann-Hurwitz).

Now, let’s think about what Riemann-Hurwitz says about the map X → P1
Fp

(which is separable, since

it’s generically étale, so that Riemann-Hurwitz applies). Namely, it says that

2(g(X)− 1) = −2n+ deg(ΩX/Y ) (26)
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Now, note ∞ is the only point of P1
Fp

that can ramify (since it’s étale over A1
Fp

) and so

deg(ΩX/Y ) =
∑
x 7→∞

(ex − 1) (27)

where ex is literally the ramification of x. But, note that∑
x 7→∞

(ex − 1) =
∑
x 7→∞

ex −#{x 7→ ∞} = n−#x 7→ ∞

and thus putting this into (26) gives

2(g(X)− 1) = −n−#{x 7→ ∞}

but since #{x 7→ ∞} 6 n the only way this equality could happen is if g(X) = 0, n = 1, and #{x 7→ ∞} = 1.
But, this implies precisely that X → A1

Fp
is an isomorphism as desired.

But, what I’ve just told you is a lie. For example, t 7→ tp − t − 1 is a non-trivial finite étale cover
A1

Fp
→ A1

Fp
. So, where did we go wrong above? We just did nice old geometry, so pure, so simple that we

couldn’t have made a mistake, right? Well, this is the nastiness of wild ramification.
Namely, we have the following result showing precisely where we screwed up above, and why the culprit

was wild ramification:

Theorem 3.7: Let f : X → Y be as separable map of smooth, projective, integral curves over k (an
algebraically closed field). Then,

deg(ΩX/Y ) >
∑
x∈X

(ex − 1)

with equality if and only if f is tamely ramified.

We thus see that the fatal lie in the above was that deg(ΩX/Y ) is
∑
x7→∞

(ex − 1).

Thus, we see that tame ramification messes with our geometry—it screws up our usually neat geometric
formulas and turns them into something which is much harder to use. This is a good geometric intuition
about why our credo is correct.
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